
Sitecore Commerce Connect 7.5
The Commerce Connect Developer's Guide Rev: 21 January 2015

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Sitecore Commerce Connect 7.5

The Commerce Connect
Developer's Guide
A Developer's Guide for using Commerce Connect to build E-commerce solutions

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 2 of 150

Table of Contents

Chapter 1 Introduction .. 6
Chapter 2 Using Connect to build e-commerce solutions .. 7

2.1 Carts .. 8
2.1.1 Cart Domain Model ... 8

IReadOnlyCollections and service API .. 9
Cart Keys .. 10
Class: Cart Base .. 10
Class: Cart .. 11
Class: Cart Line .. 11
Class: Cart Product .. 12
Class: Cart Adjustment .. 12
Class: Cart Option .. 13

2.1.2 Cart Service Provider .. 14
GetCarts ... 14
CreateOrResumeCart .. 15
LoadCart ... 16
SaveCart .. 16
AddCartLines.. 17
RemoveCartLines .. 18
UpdateCartLines .. 19
DeleteCart .. 20
UpdateCart ... 21
LockCart ... 22
UnlockCart .. 23
MergeCart .. 23
AddParties .. 24
RemoveParties ... 25
UpdateParties... 26
AddPaymentInfo ... 27
RemovePaymentInfo .. 27
AddShippingInfo ... 28
RemoveShippingInfo .. 28

2.1.3 Cart Pipelines .. 29
GetCarts ... 29
CreateOrResumeCart .. 30
CreateCart .. 32
ResumeCart ... 34
LoadCart ... 37
SaveCart .. 38
AddCartLines.. 40
RemoveCartLines .. 42
UpdateCartLines .. 44
DeleteCart .. 45
UpdateCart ... 47
LockCart ... 49
UnlockCart .. 50
MergeCart .. 52

2.2 Pricing ... 54
2.2.1 The Pricing Domain Model .. 54

Class: Price .. 54
Class: Price Condition .. 55

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 3 of 150

Class: Total .. 56
Class: TaxTotal .. 56
Class: TaxSubtotal ... 56

2.2.2 Pricing Service Methods ... 57
GetProductPrices ... 57
GetProductBulkPrices .. 58
GetCartTotal ... 59

2.2.3 Pricing Pipelines .. 59
GetProductPrices ... 59
GetProductBreakPrices .. 60
GetCartTotals ... 60

2.3 Order ... 62
2.3.1 The Order Domain Model .. 62

Class: Order ... 62
Class: OrderHeader ... 62

2.3.2 Order Service Methods ... 63
SubmitVisitorOrder ... 63
GetVisitorOrder .. 64
GetVisitorOrders .. 64
VisitorCancelOrder ... 65

2.3.3 Order Pipelines .. 66
SubmitVisitorOrder ... 66
GetVisitorOrders .. 66
GetVisitorOrder .. 67
VisitorCancelOrder ... 68

2.4 Inventory .. 69
2.4.1 The Inventory Domain Model .. 69

Class: StockInformation ... 70
Class: OrderableInformation .. 70
Class: IndexStockInformation .. 70
Class: StockInformationUpdate.. 71
Class: StockInformationUpdateLocation .. 71
Class: StockDetailsLevel .. 71
Class: StockStatus ... 72
Class: InventoryProduct ... 73
Class: StockLocations .. 73

2.4.2 Inventory Service Methods .. 73
GetStockInformation .. 74
GetPreOrderableInformation .. 74
GetBackOrderableInformation ... 75
VisitedProductStockStatus ... 76
ProductsAreBackInStock ... 76
VisitorSignUpForStockNotification ... 77
RemoveVisitorFromStockNotification .. 78
GetBackInStockInformation ... 78

2.4.3 Inventory Pipelines .. 79
GetStockInformation .. 79
StockStatusForIndexing ... 80
GetPreOrderableInformation .. 81
GetBackOrderableInformation ... 82
VisitorAppliedFacet .. 82
VisitorAppliedSortOrder ... 83
ProductsAreBackInStock ... 84
GetBackInStockInformation ... 84

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 4 of 150

VisitorSignUpForStockNotification ... 85
RemoveVisitorFromStockNotification .. 86
OrderedProductStockStatus .. 87
AddToCartStockStatus ... 88
VisitedProductStockStatus ... 88
CurrentProductID ... 89

2.5 Customer ... 91
2.5.1 The Customer Domain Model ... 91

Class: CommerceUser ... 91
Class: CommerceCustomer ... 93
Class: CustomerParty .. 94
Class: CustomerPartyTypes .. 94
Class: Party .. 94

2.5.2 Customer Service Methods ... 95
CreateUser ... 95
UpdateUser .. 96
DeleteUser ... 96
DisableUser .. 97
EnableUser ... 97
GetUser .. 98
GetUsers .. 98
CreateCustomer ... 99
UpdateCustomer .. 100
DisableCustomer .. 101
EnableCustomer .. 101
DeleteCustomer ... 102
GetCustomer .. 103
GetCustomers .. 103
AddCustomers.. 104
AddUsers .. 105
RemoveCustomers .. 105
RemoveUsers... 106
AddCustomerParties .. 107
RemoveCustomerParties ... 108
UpdateCustomerParties ... 108
AddParties .. 109
GetParties .. 110
RemoveParties ... 111
UpdateParties... 111
UpdatePassword .. 112

2.5.3 Customer Pipelines ... 113
CreateUser ... 113
UpdateUser .. 114
DeleteUser ... 114
DisableUser .. 115
EnableUser ... 116
GetUsers .. 117
GetUser .. 117
CreateCustomer ... 118
GetCustomers .. 119
GetCustomer .. 119
UpdateCustomer .. 120
DeleteCustomer ... 120
DisableCustomer .. 121

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 5 of 150

EnableCustomer .. 121
AddCustomerParties .. 122
RemoveCustomerParties ... 123
UpdateCustomerParties ... 123
GetParties .. 124
AddParties .. 125
RemoveParties ... 125
UpdateParties... 126

2.6 Product Sync ... 128
2.6.1 The Product Sync Domain Model ... 128

Class: Product .. 130
Class: ProductSpecifications .. 130
Class: ProductSpecification ... 131
Class: ProductClassification ... 131
Class: ProductType .. 131
Class: ProductManufacturer ... 131
Class: ProductClassificationGroup .. 132
Class: ProductVariantSpecificaions ... 132
Class: ProductResource .. 132
Class: Division .. 132
Class: ProductRelation ... 133
Class: ProductRelationType ... 133

2.6.2 Product Sync Service Methods ... 133
SynchronizeProducts ... 133
SynchronizeProductList ... 134
SynchronizeProduct ... 134
SynchronizeArtifacts .. 135

2.6.3 Product Sync Pipelines ... 135
SynchronizeProducts ... 135
SynchronizeProductList ... 136
GetExternalCommerceSystemProductList .. 136
GetSitecoreProductList .. 136
SynchronizeArtifacts .. 137
SynchronizeManufacturers .. 137
SynchronizeClassifications .. 138
SynchronizeTypes .. 138
SynchronizeDivisions ... 139
SynchronizeResources .. 139
SynchronizeSpecifications ... 140
SynchronizeGlobalSpecifications ... 140
SynchronizeTypeSpecifications ... 141
SynchronizeClassificationSpecifications .. 142
SynchronizeProduct ... 143
SynchronizeProductManufacturers .. 143
SynchronizeProductType ... 144
SynchronizeProductClassifications .. 144
SynchronizeProductEntity .. 145
SynchronizeProductDivisions ... 145
SynchronizeProductResources .. 146
SynchronizeProductRelations .. 146
SynchronizeProductSpecifications ... 147

2.7 Connect Configuration .. 148
2.7.1 Factories and entities .. 148
2.7.2 Pipelines for Methods .. 149

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 6 of 150

Chapter 1

Introduction

Sitecore Commerce Connect is an e-commerce framework designed to integrate Sitecore
with different external commerce systems and at the same time integrate customer
engagement functionality provided in the Sitecore Experience Platform.

Note
In the following, Connect is used as an abbreviation for Sitecore Commerce Connect and ECS is
used for External Commerce System.

For a general introduction and overview of the components in Connect, see the Sitecore
Commerce Connect Overview.

This guide describes the API and configuration of Connect for frontend developers who
create Sitecore solutions and are looking for information about how to use Connect

If you are a developer looking for information about how to integrate Connect with an
external commerce systems, see the Connect Integration Guide

 Chapter 1 — Introduction
This chapter contains an introduction for this guide.

 Chapter 2 — Using Connect to build e-commerce solutions
This chapter describes how to use the Connect API as a solution developer.

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 7 of 150

Chapter 2

Using Connect to build e-commerce solutions

This chapter describes the Connect API which consists of a number of abstract service
layers. Each section in this chapter describes a service layer, its relevant classes and
how to use it.

This chapter contains the following sections:

 Carts

 Pricing

 Order

 Inventory

 Customer

 Product Sync

 Connect Configuration

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 8 of 150

2.1 Carts

2.1.1 Cart Domain Model

This chapter describes the domain model that represents the cart and its constituent Data Transfer
Objects (DTO). The domain model is used when a Sitecore developer needs to interact with the cart and
transfer cart data back and forth to the ECS. All business logic for carts is implemented in the service
layer API, which must be used to manipulate carts.

Some examples are of cart domain model usage:

 To collect information from visitors

 To display information in renderings

 To use information for personalization

 To pass cart information to the external commerce system

 To return cart total from pricing service layer

Note: Because cart has strong references to Price and Total they are included in the domain model, but
methods for calculating total and getting prices are part of the Pricing integration service layer.

Note: The class diagram below shows the domain model. All the Cart classes, prefixed with Cart, to the
left, are described in this document, whereas the Price, Total and TaxTotal classes to the right are
described in the Pricing document and is manipulated by the pricing API as well as the Party,
ShippingInfo and PaymentInfo are part of the Customer, Shipping and Payment service layers
respectively. For more information see the respective service layer documents for more information.

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 9 of 150

Note: The domain model consists of classes that make up the contracts with the external system. The
contracts are defined as classes instead of interfaces to allow the model to be easily extended later if
needed. This follow the best practice guidelines defined in the book Framework Design Guidelines.

Default implementation of the contracts are delivered as part of Connect. If an actual Connect provider
with an external commerce system contains more functionality than provided by default, the
implementation can be replaced. All instantiation of actual classes will be handled using the Factory
design pattern.

IReadOnlyCollections and service API

Most collections in the domain model are specified as IReadOnlyCollections. This is done to avoid
developers modifying these collections directly. All manipulation must be done through calling of the
service API.

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 10 of 150

Cart Keys

A cart has two unique composite keys:

 CartId (aka. ExternalCartId), ShopName
Some methods like LoadCart use this key to locate a cart.

 UserId, CustomerId, CartName, ShopName
Some methods like GetCarts and CreateCart uses this key

Class: Cart Base

The Cart Base represents a summary of the main cart data and is used as return values from GetCarts
and CreateOrResumeCart in case of multiple matching carts.

The Cart class is inherited from Cart Base. For more information, see class Cart below.

Name Type Description

Name String Can be used to name a cart. The property is
optional to use, but can be used in solutions
where a single visitor/user can have multiple
carts. In order to differentiate between the
carts, a string value must be provided.

UserId String The identifier for the user of the cart, can be:

 the contact Id or Identifier provided by
Sitecore

 A user id provided by Sitecore

 A user id provided by ECS
CustomerId String The identifier for the customer of the cart.

The customer cannot manipulate the cart
directly, but only indirectly through the user.
For more information, see the Connect roles
document:

ShopName String The shop name where the cart belongs. Is used
to enable multi-shop support.
Can in implementation correspond to website
name if there is a one-2-one mapping between
website and shop.
All API methods take ShopName as parameter.

IsLocked Boolean Indicates if the cart is locked or not
A cart is typically locked during part of the
checkout process, especially after initiation of
payment

CartType String Contains type values for different usage of cart.
Example values are: Regular, Gift card, Wish
list, Recurring-cart.
In default implementation only “Regular” will be
used and tested
Can be extended later and customized in the
actual Connect provider implementation.

CartStatus String A status code: InProcess, Abandoned. Can be
extended later and customized in the actual
Connect provider implementation.
The value is updated in the Abandoned Cart EA
plan, if a cart is resumed from abandoned state

https://svn1dk1.dk.sitecore.net/svn/DOC-Team/Sitecore%20CMS%20Modules/Retail%20Chain%20solution/Projects/Ionian%20Sea/Backlog/Roles.docx
https://svn1dk1.dk.sitecore.net/svn/DOC-Team/Sitecore%20CMS%20Modules/Retail%20Chain%20solution/Projects/Ionian%20Sea/Backlog/Roles.docx

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 11 of 150

Class: Cart

The Cart is responsible for representing the collection of products a customer is planning to buy. It is used
when the content of the cart needs to be displayed or when Sitecore needs to determine the content of
the cart for any other purpose (such as personalization).

The Cart class inherits its base cart data from Cart Base. For more information, see class Cart Base
Above.

Name Type Description

CartLines IReadOnlyCollection<CartLine> Contains the cart lines.
Adjustments IReadOnlyCollection<Adjustment> Collection of adjustments that describe any

discrepancies between the total and the
sum of the prices of the individual cart line
items.

Examples are coupon codes (manually
triggered), and shipping surcharges
(automatically triggered)

CartTotal Total Represents the total value for the products
in the cart.

Class: Cart Line

The Cart Line represents a line in the shopping cart. It represents something that a visitor has added to
his cart, along with the quantity of the item that was added to the cart. It also represents the position of
the line relative to other lines in the cart (for controlling the order the lines appear when the lines are
displayed).

Name Type Description

ExternalCartLineId String Unique identifier for the cart line in the
commerce system.
Will be empty when adding cart lines and
can be set by the ECS.
Can be specified when removing cart
lines
Can be specified when updating cart lines

Quantity Unsigned integer The quantity of the specific cart product in
the cart.

Product CartProduct The cart line product. The Cart Product
object contains the reference to the actual
product

LineNumber Unsigned integer The position of the cart line in the cart.
Can be specified when removing cart
lines
Can be specified when updating cart lines
Can be empty when adding cart lines

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 12 of 150

Adjustments IReadOnlyCollection<Adjustment> Collection of adjustments that describe
any discrepancies between the total and
the cart item price.
The actual content of the adjustments are
provided by the ECS.

Total Total Represents the total for the product
represented by the cart product (sub-
item).This value will be the same as the
total on the cart product (sub-item)
multiplied by the quantity including list of
Adjustments.
Read-only. Is reserved for Pricing
Service Layer. Should not be supplied
when adding, removing or updating cart
lines

SubLines IReadOnlyCollection<CartLine> Recursive sub-lines
For example, if the cart item is a bundled
product, the sub-lines are the individual
products that make up the bundle.
Another example is services like
insurance that is added to a product

Class: Cart Product

The Shopping Cart Product represents a product in a Shopping Cart Line, or a sub-item of a Shopping
Cart Product in case of bundling or insurance etc.

Name Type Description

ProductId String Unique identifier for the product in
the external commerce system.

SitecoreProductItemId ID Shortcut for referencing the product
item in Sitecore directly

Options IReadOnlyCollection<Option> Represents visitor-specified product
options (such as engraving=Adam)

LineNumber Unsigned integer Gets the position of the cart item in
the cart.

Adjustments IReadOnlyCollection<Adjustment> Collection of adjustments that
describe any discrepancies
between the total and the price of
the cart item's product.

Price Price Contains the product price.
Can be supplied when adding or
updating cart lines to cart, but can
also be set by Pricing service layer
during call to GetCartTotal

Class: Cart Adjustment

A cart adjustment describes a charge or a discount given on a Cart, Cart Line or Cart Line Product.

Examples are:

 Coupon codes (manually triggered) on the Cart or the Cart Line

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 13 of 150

 Shipping surcharges on the Cart or Cart Line (automatically triggered)

The adjustment can be a fixed amount or a percentage, but not both at the same time. If both an
amount and percentage is applied, then two adjustments must be given and the LineNumber
specifies the order in which they are applied

Name Type Description

Amount Decimal Amount that needs to be added or
subtracted to sub-total.
Only Amount or Percentage (see
below) can be used at any one time

Description String A description of the charge or discount
applied. Description could include a
reference to coupon code, if that’s the
scenario

IsCharge Boolean Indicates it is a charge if true,
otherwise discount

Percentage Float A percentage that needs to be added
or subtracted. Only Amount or
Percentage can be used at any one
time

LineNumber Unsigned integer If multiple adjustments are given the
LineNumber specifies the order in
which the charge or discount is
applied.
The information stored in adjustments
is used for presentation, showing
calculation order and not for actually
calculation to the cart.

Class: Cart Option

Option represents a configurable or variable value that is specific to an item in the cart. An example of an
option is engraving on a personalized product. When the "engraving" service is added to the cart, the text
to engrave is also required. The Option represents this.

If an option has an additional charge, the option should be represented by a separate Cart Line Product.
The option is only used to describe variables or settings on a specific Cart Line Product, not to handle
adjustments or pricing changes.

Name Type Description

OptionId String An internal ID for the option, typically provided by
Sitecore when the user adds an option to the cart
line

Description String An optional description referring to the type of
option. For example, Engraving, Name on t-shirt
etc.

Value String The actual custom value

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 14 of 150

2.1.2 Cart Service Provider

Service providers are wrapper objects designed to make it easier to interact with Connect pipelines. The
providers implement no logic other than calling Connect pipelines. All of the business logic is
implemented in the pipeline processors.

For each method in the provider there is a corresponding Request and Result object used, ex. GetCarts
takes a GetCartsRequest object and returns a GetCartsResult object. In some cases the response
objects are re-used when returning the same data.

Customized versions of the default request and result arguments can be used by calling the overloaded
generics based versions of the methods.

The Cart Service Provider contains the following methods for interacting with cart data.

GetCarts

GetCarts is used to query Cart data against the external commerce system and doesn’t return a
collection of Carts, but a collection of CartBase objects that only contains the summary of the main cart
data.

Name: GetCarts

Description: Gets the carts that match the specified criteria. Calls the pipeline "GetCarts"

Usage: Called when a list of carts is needed.

Examples include:

 Getting the carts for a specific visitor across all visitors

 Getting one of the carts for the current visitor in a multi-cart solution

 Getting the carts that have not been used within a period of time, for
example, abandoned

Signature: GetCartsResult GetCarts(GetCartsRequest request)

Input:

 UserId – Optional - The ids of the users whose carts should be retrieved. If no
value is specified, the user IDs are not considered when retrieving carts.

 CustomerId – Optional – The ids of the customers whose carts should be
retrieved. If no value is specified the customer IDs are not considered when
retrieving carts.

 CartName – Optional - The names of the carts that should be retrieved. If no
value is specified, the cart names are not considered when retrieving carts.

 CartStatus – Optional – The status of carts that should be retrieved. Examples
include "Active" and "Abandoned". If no value is specified, the cart statuses are
not considered when retrieving carts.

This could be used in a B2B scenario when you want to display a list of
available carts to a user but only carts that are not locked.

 IsLocked – Optional – If provided it will mean the search also will filter on
whether the cart is locked or not

 ShopName – Optional. Name of shop to search for carts in

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 15 of 150

Output:

 IEnumerable<CartBase> – A collection of CartBase objects

The lists represent the carts that match the criteria specified in the request.

 SystemMessages - Collection of messages from the external system.

Usage Example:

var cartServiceProvider = new CartServiceProvider();

// Create request to get the carts.

var request = new GetCartsRequest("MyStore")

{

 UserIds = new Collection<string> { "John" },

 CustomerIds = new Collection<string> { "JohnCustomerId" },

 Names = new Collection<string> { "JohnsName" },

 Statuses = new Collection<string> { "InProcess" },

 IsLocked = false

};

// Call service provider and receive the result.

var result = cartServiceProvider.GetCarts(request);

CreateOrResumeCart

Name: CreateOrResumeCart

Description: Initiate the creation of a shopping cart and in the process:

 Tries to load persisted, potentially abandoned cart, if present

 Trigger event in DMS

 Enter user in Engagement Automation plan with ID of shopping cart.
Usage: Called when a shopping cart is needed upon visitor arrival to shop.

Signature: CreateOrResumeCartResult CreateCart(CreateOrResumeCartRequest

request)

Input: All four input parameters are used to search and match against existing carts for the
current visitor, but only two of them are mandatory.

 UserId – Mandatory
 CustomerId – Optional
 CartName – Optional
 ShopName – Mandatory

Output:
 Cart – A Cart object instance which represent the shopping cart. In case multiple

carts already exists for the current visitor and it is undecided which one to return,
then no cart is returned

 IEnumerable<CartBase> - In case multiple carts already exists for the current
visitor and it is undecided which one to return, then a list of CartBase objects are
returned

 SystemMessages - Collection of messages from the external system.

Usage Example:

var cartServiceProvider = new CartServiceProvider();

// Create the request.

var createCartRequest = new CreateOrResumeCartRequest("Autohaus", "Bred");

// Call the service provider to get the cart

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 16 of 150

var cart = cartServiceProvider.CreateOrResumeCart(createCartRequest).Cart;

// Read the id of the returned cart

var id = cart.ExternalId;

// Create request to remove the cart.

var deleteCartRequest = new DeleteCartRequest(cart);

// Call the service provider and receive the result.

cartServiceProvider.DeleteCart(deleteCartRequest);

LoadCart

Name: LoadCart

Description: Gets the cart with given Cart ID on the specified shop. Calls the pipeline
"LoadCart". This method returns the full cart object with all cartlines associated.

Usage: Called when a specific cart is needed
Signature: LoadCartResult LoadCart(LoadCartRequest request)

Input:
 CartId – required
 ShopName – required

Output:
 Cart – A cart object instance which represent the shopping cart that matches

the criteria specified in the request.

 SystemMessages - Collection of messages from the external system.

Usage Example:

var cartServiceProvider = new CartServiceProvider();

// Create the request

var request = new LoadCartRequest("Autohaus", "Bred");

// call the service provider to get the cart

var cart = cartServiceProvider.LoadCart(request).Cart;

SaveCart

Name: SaveCart

Description: Saves the specified cart in the external system if supported as well as in
Sitecore EA state. Calls the pipeline "SaveCart".
Called from other service layer methods implicitly, but not called explicitly

Usage: Called when a specific cart needs to be persisted. The method should be
executed after any operation that modified the cart resulting in a change of cart.
It’s executed implicitly when update cart, adding, deleting or updating cart lines
as well as locking and un-locking the cart.

Signature: SaveCartResult SaveCart(SaveCartRequest request)

Input:
 Cart – required

Output:
 SystemMessages - Collection of messages from the external system.

Usage Example:

var cartServiceProvider = new CartServiceProvider();

// Create cart and lock it.

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 17 of 150

var createCartRequest = new CreateOrResumeCartRequest("Autohaus", "Mark");

var cart = cartServiceProvider.CreateOrResumeCart(createCartRequest).Cart;

// add a cartline to the cart

var cartLine1 = new CartLine

{

 Quantity = 1,

 Product = new CartProduct

 {

 ProductId = "Audi Q10",

 Price = new Price(55, "USD")

 }

};

var cartLines = new Collection<CartLine> { cartLine1 };

var addCartLinesRequest = new AddCartLinesRequest(cart, cartLines);

cart = cartServiceProvider.AddCartLines(addCartLinesRequest).Cart;

var saveCartRequest = new SaveCartRequest(cart);

var result = cartServiceProvider.SaveCart(saveCartRequest);

AddCartLines

Name: AddCartLines

Description: Responsibility is to add lines to cart.
Usage: Called when a list of cart lines is about to be added to the shopping cart. UI wise

when the user clicks the Add-To-Cart button.
Signature: AddCartLinesResult AddCartLines(AddCartLinesRequest

request)

Input:
 Cart – Required - The cart must be unmodified. Any changes made to cart

instance will be disregarded. Only the cart Id and ShopName are considered for
retrieving and modifying the cart.

 IEnumerable<CartLine> CartLines – Required - A collection of cart lines to
add

Output:
 Cart - Cart object that represent the updated cart in the external system.
 SystemMessages - Collection of messages from the external system

Usage Example:

var cartServiceProvider = new CartServiceProvider();

// Prepare parameters for getting cart for visitor ID Ivan in shop Autohaus

var createCartRequest = new CreateOrResumeCartRequest("Autohaus", "Ivan");

// Get a cart, new or existing

var cart = cartServiceProvider.CreateOrResumeCart(createCartRequest).Cart;

// Create cart line with subline to add to the cart

var cartLines = new ReadOnlyCollection<CartLine>(new Collection<CartLine>

{

 new CartLine

 {

 Product = new CartProduct

 {

 ProductId = "Audi",

 Price = new Price(10000, "USD") },

 Quantity = 1,

 SubLines = new Collection<CartLine>

 {

 new CartLine

 {

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 18 of 150

 Product = new CartProduct

 {

 ProductId = "Winter Tyres",

 Price = new Price(100, "USD")

 },

 Quantity = 4

 },

 new CartLine

 {

 Product = new CartProduct

 {

 ProductId = "Summer Tyres",

 Price = new Price(80, "USD")

 },

 Quantity = 4

 }

 }

 }

}

);

// Create request with prefix and prefix lines

var request = new AddCartLinesRequest(cart, cartLines);

// Add prefix lines into prefix

var result = cartServiceProvider.AddCartLines(request);

var resultCart = result.Cart;

RemoveCartLines

Name: RemoveCartLines

Description: Responsibility is to remove lines from cart.
Usage: Called when one or more cart lines are about to be removed from the shopping

cart. UI wise when the user updates the cart by removing one or more lines.
Signature: RemoveCartLinesResult

RemoveCartLines(RemoveCartLinesRequest request)

Input:
 Cart - Required. The cart must be unmodified. Any changes made to cart

instance will be disregarded. Only the cart Id and ShopName are considered for
retrieving and modifying the cart.

 IEnumerable<CartLine> CartLines – Required - A collection of cart lines to
remove.
ExternalCartLineId, LineNumber or object reference can be used to identify the
line(s) to be removed.
The default Connect based implementation removes lines by object reference.
Typically

Output:
 Cart - Cart object that represent the updated cart in the external system.
 SystemMessages - Collection of messages from the external system

Usage Example:

var cartServiceProvider = new CartServiceProvider();

// Create cart with "Audi Q10", "BMW X7" and "Citroen C3"

var createCartRequest = new CreateOrResumeCartRequest("Autohaus", "John");

var cart = cartServiceProvider.CreateOrResumeCart(createCartRequest).Cart;

var cartLine1 = new CartLine

{

 Quantity = 1,

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 19 of 150

 Product = new CartProduct

 {

 ProductId = "Audi Q10",

 Price = new Price(55, "USD")

 }

};

var cartLine2 = new CartLine

{

 Quantity = 2,

 Product = new CartProduct

 {

 ProductId = "BMW X7",

 Price = new Price(10, "USD")

 }

};

var cartLine3 = new CartLine

{

 Quantity = 1,

 Product = new CartProduct

 {

 ProductId = "Citroen C3",

 Price = new Price(25, "USD")

 }

};

var cartLines = new Collection<CartLine>

{

 cartLine1, cartLine2, cartLine3

};

var addCartLinesRequest = new AddCartLinesRequest(cart, cartLines);

cart = cartServiceProvider.AddCartLines(addCartLinesRequest).Cart;

// Create request to remove cart line "BMW X7".

var request = new RemoveCartLinesRequest(cart, cart.Lines.Where(l => l.Product.ProductId

== "BMW X7").ToArray());

// Call service provider and receive the result.

var result = cartServiceProvider.RemoveCartLines(request);

UpdateCartLines

Name: UpdateCartLines

Description: Responsibility is to update lines on cart.
Usage: Occurs when a shopping cart is about to be updated referring to lines already in

the cart. UI wise it is when the user updates the cart regarding a specific
product. Most typically it is when

 The quantity is changed

 A service is added like insurance or shipping

 Promotion code is added for a given product

 Product is replaced with another variant

Signature: UpdateCartLinesResult

UpdateCartLines(UpdateCartLinesRequest request)

Input:
 Cart - Required. The cart must be unmodified. Any changes made to cart

instance will be disregarded. Only the cart Id and ShopName are considered for
retrieving and modifying the cart.

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 20 of 150

 IEnumerable<CartLine> CartLines – Required - A collection of cart lines to
update on cart

Output:
 Cart – Cart object that represent the updated cart in the external system.
 SystemMessages - Collection of messages from the external system.

Usage Example:

var cartServiceProvider = new CartServiceProvider();

// Create cart with "Audi Q10", "BMW X7" and "Citroen C3"

var createCartRequest = new CreateOrResumeCartRequest("Autohaus", "John");

var cart = cartServiceProvider.CreateOrResumeCart(createCartRequest).Cart;

var cartLine1 = new CartLine

{

 Quantity = 1,

 Product = new CartProduct

 {

 ProductId = "Audi Q10",

 Price = new Price(55, "USD")

 }

};

var cartLine2 = new CartLine

{

 Quantity = 2,

 Product = new CartProduct

 {

 ProductId = "BMW X7",

 Price = new Price(10, "USD")

 }

};

var cartLines = new Collection<CartLine> { cartLine1, cartLine2 };

var addCartLinesRequest = new AddCartLinesRequest(cart, cartLines);

cart = cartServiceProvider.AddCartLines(addCartLinesRequest).Cart;

var bmw = cart.Lines.First(i => i.Product.ProductId == "BMW X7");

bmw.Product.Price = new Price(110000, "USD");

bmw.Quantity = 3;

// Create request to update cart lines.

var updateCartLinesRequest = new UpdateCartLinesRequest(cart, new Collection<CartLine> {

bmw });

// Call service provider and receive the result.

var result = cartServiceProvider.UpdateCartLines(updateCartLinesRequest);

DeleteCart

Name: DeleteCart

Description: Responsibility is to delete a cart permanently:

 The cart is deleted.

 Trigger event in DMS telling the cart is deleted.

Usage: Must be called when a cart needs to be deleted.
UI wise this could be

 When the user has gone through the B2C scenario of paying and an

order has been created and registered.

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 21 of 150

 After a cart has been in abandoned state for a given time and the visitor

is not expected to return.

Signature: DeleteCartResult DeleteCart(DeleteCartRequest request)

Input:
 Cart - Required. The cart must be unmodified. Any changes made to cart

instance will be disregarded. Only the cart Id and ShopName are considered for
retrieving and modifying the cart.

Output:
 SystemMessages - Collection of messages from the external system.

Usage Example:

var cartServiceProvider = new CartServiceProvider();

// Create the request.

var createCartRequest = new CreateOrResumeCartRequest("Autohaus", "Bred");

// Call the service provider to get the cart

var cart = cartServiceProvider.CreateOrResumeCart(createCartRequest).Cart;

// Read the id of the returned cart

var id = cart.ExternalId;

// Create request to remove the cart.

var deleteCartRequest = new DeleteCartRequest(cart);

// Call the service provider and receive the result.

cartServiceProvider.DeleteCart(deleteCartRequest);

UpdateCart

Name: UpdateCart

Description: Responsibility is to pass an updated cart to the external commerce system
Trigger event in DMS telling the cart is being updated.

Usage: The method should be executed after any operation that modifies the cart,
typically when Adjustments have been added, removed or modified.

Signature: UpdateCartResult UpdateCart(UpdateCartRequest request)

Input:
 Cart - Required - The cart to be updated. The cart must be unmodified. Any

changes made to cart instance will be disregarded. Only the cart Id and
ShopName are considered for retrieving and modifying the cart.

 Cart Base – An instance of Cart Base containing the changes to be made to the
cart
Typically the only properties allowed to be modified would be: UserId,
CustomerId, CartName and potentially ShopName.
Whether IsLocked and CartStatus will be considered, depends on business logic
in the external commerce system.

Null values will not be considered, but blank values will
Output:

 Cart – Cart object that represent the updated cart in the external system.
 SystemMessages - Collection of messages from the external system.

Usage Example:

var cartServiceProvider = new CartServiceProvider();

// Create prefix.

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 22 of 150

var createCartRequest = new CreateOrResumeCartRequest("Autohaus", "Peter");

var cart = cartServiceProvider.CreateOrResumeCart(createCartRequest).Cart;

// Create the instance of the CartBase with properties that should be changed in existing

prefix.

var changes = new CartBase

{

 CustomerId = "Customer Peter",

 Name = "Peter's Cart",

 ShopName = "Autohaus"

};

// Create request to update the prefix.

var updateCartRequest = new UpdateCartRequest(cart, changes);

// Call service provider with prepared request and receive the result.

var result = cartServiceProvider.UpdateCart(updateCartRequest);

LockCart

Name: LockCart

Description: Responsibility is to set the cart in a locked state where it is ready to be
committed to an order but before any optional payment transaction is performed:

 Set cart to locked and save it.

 Trigger event in DMS telling the cart is in locked state.

When cart is in locked state it indicates two things:

 It’s not possible to modify the shopping cart content using the other

service layer methods

 It’s easy to identify the carts in locked state in order to compare and

confirm with payment transactions whether there are carts that have not

been finalized due to some unforeseen incident in the checkout

process.

There is a corresponding UnlockCart method. If the cart is locked when
LockCart is called, the pipeline is aborted and nothing happens.

Usage: Is typically executed during the checkout process, just before any payment
transaction is about to be executed and before turning the cart into an order. UI
wise its triggered when a user in the checkout flow has selected “confirm” and in
a B2C scenario is going to pay and the order is created.

Signature: LockCartResult LockCart(LockCartRequest request)

Input:
 Cart - Required

Output:
 Cart – Cart object that represent the updated cart in the external system.
 SystemMessages - Collection of messages from the external system.

Usage Example:

var cartServiceProvider = new CartServiceProvider();

// Create a sample cart.

var createCartRequest = new CreateOrResumeCartRequest("Autohaus", "Jho");

var cart = cartServiceProvider.CreateOrResumeCart(createCartRequest).Cart;

// Create request to lock this cart.

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 23 of 150

var lockCartRequest = new LockCartRequest(cart);

// Call service provider and receive the result.

var result = cartServiceProvider.LockCart(lockCartRequest);

UnlockCart

Name: UpdateCartLines

Description: Responsibility is to set the cart in an unlocked state:

 Set cart to unlocked and save it.

 Trigger event in DMS telling the cart is in locked state.

By default a cart is in unlocked state and can be edited
There is a corresponding LockCart method, which sets the state to locked. If the
cart is not locked when UnlockCart is called, the pipeline is aborted and nothing
happens.

Usage: Is typically called if user returns to cart and decides to modify the content after
starting the checkout process and payment transaction, but its implementation
specifies how it should be handled.

Signature: UnlockCartResult UnlockCart(UnlockCartRequest request)

Input:
 Cart – Required

Output:
 Cart – Cart object that represent the updated cart in the external system.
 SystemMessages - Collection of messages from the external system. This is

how error conditions can be reported.

Usage Example:

var cartServiceProvider = new CartServiceProvider();

// Create cart and lock it.

var createCartRequest = new CreateOrResumeCartRequest("Autohaus", "Mark");

var cart = cartServiceProvider.CreateOrResumeCart(createCartRequest).Cart;

var lockCartRequest = new LockCartRequest(cart);

cart = cartServiceProvider.LockCart(lockCartRequest).Cart;

// Create request to unlock this cart.

var unlockCartRequest = new UnlockCartRequest(cart);

// Call service provider and receive the result.

var result = cartServiceProvider.UnlockCart(unlockCartRequest);

MergeCart

Name: MergeCart

Description: Responsibility is to merge two specified carts:

 Both carts must have identical shop names.

 Both carts must have different ExternalIDs.

 Cart1 and Cart2 cart line items are merged and returned

Usage: Is typically called when a user logs in and the system notices an anonymous
cart exists.

Signature: CartResult MergeCart([NotNull] MergeCartRequest request)

Input:

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 24 of 150

 UserCart – Required
AnonymousCart - Required

Output:
 Cart – Cart object representing the merged user cart.

Usage Example:

var cartServiceProvider = new CartServiceProvider();

var userCart = new Cart

{

 ExternalId = "0",

 ShopName = "first shop",

 Lines = new List<CartLine>

 {

 new CartLine

 {

 Quantity = 1,

 Product = new CartProduct

 {

 ProductId = "Audi Q10",

 Price = new Price(55, "USD")

 }

 }

 }

};

var anonymousCart = new Cart

{

 ExternalId = "1",

 ShopName = "first shop",

 Lines = new List<CartLine>

 {

 new CartLine

 {

 Quantity = 1,

 Product = new CartProduct

 {

 ProductId = "BMW M5",

 Price = new Price(75, "USD")

 }

 }

 }

};

var request = new MergeCartRequest(userCart, anonymousCart);

var mergeredCart = cartServiceProvider.MergeCart(request).Cart;

cartServiceProvider.DeleteCart(new DeleteCartRequest(anonymousCart));

AddParties

Name: AddParties

Description: Responsibility is to add parties to a cart
Usage: Is typically called when adding party information to a cart

Signature: AddPartiesResult AddParties([NotNull] AddPartiesRequest

request)

Input:
 Cart – Required

Parties -- Required

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 25 of 150

Output:
 Parties – The read only list of all parties associated with this cart after the add

Usage Example:

var cartServiceProvider = new CartServiceProvider();

var createCartRequest = new CreateOrResumeCartRequest("Autohaus", "John");

var cart = cartServiceProvider.CreateOrResumeCart(createCartRequest).Cart;

var partyList = new List<Party>

{

 new Party

 {

 PartyId = "123", FirstName = "Joe", LastName = "Smith",

 Address1 = "123 Street", City = "Ottawa",

 State = "Ontario", Country = "Canada"

 },

 new Party

 {

 PartyId = "456", FirstName = "Jane", LastName = "Smith",

 Address1 = "234 Street", City = "Toronto",

 State = "Ontario", Country = "Canada"

 }

};

var addPartiesRequest = new AddPartiesRequest(cart, partyList);

var addPartiesResult = cartServiceProvider.AddParties(addPartiesRequest);

RemoveParties

Name: RemoveParties

Description: Responsibility is to remove parties from a cart
Usage: Is typically called when removing party information

Signature: RemovePartiesResult RemoveParties([NotNull]

RemovePartiesRequest request)

Input:
 Cart – Required

Parties – Required – The list of parties to remove from the cart
Output:

 Parties – The read only list of all parties associated with this cart after the
remove

Usage Example:

var cartServiceProvider = new CartServiceProvider();

var createCartRequest = new CreateOrResumeCartRequest("Autohaus", "John");

var cart = cartServiceProvider.CreateOrResumeCart(createCartRequest).Cart;

var partyList = new List<Party>

{

 new Party

 {

 PartyId = "123", FirstName = "Joe", LastName = "Smith",

 Address1 = "123 Street", City = "Ottawa",

 State = "Ontario", Country = "Canada"

 },

 new Party

 {

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 26 of 150

 PartyId = "456", FirstName = "Jane", LastName = "Smith",

 Address1 = "234 Street", City = "Toronto",

 State = "Ontario", Country = "Canada"

 }

};

var addPartiesRequest = new AddPartiesRequest(cart, partyList);

var addPartiesResult = cartServiceProvider.AddParties(addPartiesRequest);

var removePartiesRequest = new RemovePartiesRequest(cart, new List<Party>

{

 partyList[0]

});

var removePartiesResult = cartServiceProvider.RemoveParties(removePartiesRequest);

UpdateParties

Name: UpdateParties

Description: Responsibility is to update a list of parties within a cart
Usage: Is typically called when parties need to be updated

Signature: UpdatePartiesResult UpdateParties([NotNull]

UpdatePartiesRequest request)

Input:
 Cart – Required

Parties – Required – The list of parties to update in the cart
Output:

 Parties – The read only list of all parties associated with this cart after the
update

Usage Example:

var cartServiceProvider = new CartServiceProvider();

var createCartRequest = new CreateOrResumeCartRequest("Autohaus", "John");

var cart = cartServiceProvider.CreateOrResumeCart(createCartRequest).Cart;

var party1 = new Party

{

 PartyId = "123",

 FirstName = "Joe",

 LastName = "Smith",

 Address1 = "123 Street",

 City = "Ottawa",

 State = "Ontario",

 Country = "Canada"

};

var party2 = new Party

{

 PartyId = "456",

 FirstName = "Jane",

 LastName = "Smith",

 Address1 = "234 Street",

 City = "Toronto",

 State = "Ontario",

 Country = "Canada"

};

var partyList = new List<Party> { party1, party2 };

var addPartiesRequest = new AddPartiesRequest(cart, partyList);

var addPartiesResult = cartServiceProvider.AddParties(addPartiesRequest);

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 27 of 150

party1.Address1 = "678 Road";

party1.City = "London";

var updatePartiesRequest = new UpdatePartiesRequest(cart, new List<Party> { party1 });

var removePartiesResult = cartServiceProvider.UpdateParties(updatePartiesRequest);

AddPaymentInfo

Name: AddPaymentInfo

Description: Responsibility is to add payment information to a cart
Usage: Is typically called during a checkout flow to add the payment info for processing

of an order.
Signature: AddPaymentInfoResult AddPaymentInfo([NotNull]

AddPaymentInfoRequest request)

Input:
 Cart – Required

Payments – Required – a list of payment info to be added to the cart
Output:

 Payments – The read only list of payments associated with the cart after the
add

Usage Example:

var cartService = new CartServiceProvider();

var cart = cartService.CreateOrResumeCart(new

 CreateOrResumeCartRequest("MyShop", "Me")).Cart;

var paymentList = new List<PaymentInfo>

{

 new PaymentInfo() { ExternalId = "1", PaymentMethodID = "1"},

 new PaymentInfo() { ExternalId = "2", PaymentMethodID = "2"}

};

var addPaymentRequest = new AddPaymentInfoRequest(cart, paymentList);

var addPaymentResult = cartService.AddPaymentInfo(addPaymentRequest);

RemovePaymentInfo

Name: RemovePaymentInfo

Description: Responsibility is to remove payment information from a cart
Usage: Is typically called when a user wants to change their payment information

Signature: RemovePaymentInfoResult RemovePaymentInfo([NotNull]

RemovePaymentInfoRequest request)

Input: Cart – Required
Payments – Required – a list of payment info to be removed from the cart

Output: Payments – The read only list of payments associated with the cart after the

remove

Usage Example:

var cartService = new CartServiceProvider();

var cart = cartService.CreateOrResumeCart(new

 CreateOrResumeCartRequest("MyShop", "Me")).Cart;

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 28 of 150

var paymentList = new List<PaymentInfo>

{

 new PaymentInfo() { ExternalId = "1", PaymentMethodID = "1"},

 new PaymentInfo() { ExternalId = "2", PaymentMethodID = "2"}

};

var addPaymentRequest = new AddPaymentInfoRequest(cart, paymentList);

var addPaymentResult = cartService.AddPaymentInfo(addPaymentRequest);

var removePaymentRequest = new RemovePaymentInfoRequest(cart, new

List<PaymentInfo> {paymentList[0]});

var removeResult = cartService.RemovePaymentInfo(removePaymentRequest);

AddShippingInfo

Name:

Description: Responsibility is to add shipping information to a cart

Usage: Is typically called during a checkout flow to add the shipping info for processing
of an order.

Signature: AddShippingInfoResult AddShippingInfo([NotNull]

AddShippingInfoRequest request)

Input:
 Cart – Required

ShippingInfo – Required – a list of shipping info to add to the cart
Output:

 ShippingInfo – A read only list of shipping info associated with the cart after the
add

Usage Example:

var cartService = new CartServiceProvider();

var cart = cartService.CreateOrResumeCart(new

 CreateOrResumeCartRequest("MyShop", "Me")).Cart;

var shippingList = new List<ShippingInfo>

{

 new ShippingInfo() { ExternalId = "1", ShippingMethodID = "1"},

 new ShippingInfo() { ExternalId = "2", ShippingMethodID = "2"}

};

var addRequest = new AddShippingInfoRequest(cart, shippingList);

var addResult = cartService.AddShippingInfo(addRequest);

RemoveShippingInfo

Name:

Description: Responsibility is to remove shipping information from a cart

Usage: Is typically called during a checkout flow to remove the shipping info for
processing of an order.

Signature: RemoveShippingInfoResult RemoveShippingInfo([NotNull]

RemoveShippingInfoRequest request)

Input:

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 29 of 150

 Cart – Required
ShippingInfo – Required – a list of shipping info to remove from the cart

Output:
 ShippingInfo – A read only list of shipping info associated with the cart after the

remove

Usage Example:

var cartService = new CartServiceProvider();

var cart = cartService.CreateOrResumeCart(new

 CreateOrResumeCartRequest("MyShop", "Me")).Cart;

var shippingList = new List<ShippingInfo>

{

 new ShippingInfo() { ExternalId = "1", ShippingMethodID = "1"},

 new ShippingInfo() { ExternalId = "2", ShippingMethodID = "2"}

};

var addRequest = new AddShippingInfoRequest(cart, shippingList);

var addPaymentResult = cartService.AddShippingInfo(addRequest);

var removeRequest = new RemoveShippingInfoRequest(cart, new

List<ShippingInfo> {shippingList[0]});

var removeResult = cartService.RemoveShippingInfo(removeRequest);

2.1.3 Cart Pipelines

The integration and engagement logic used in the Cart API is implemented by pipelines that can be
customized as needed. There is a pipeline for each method on the API. Some pipelines call other
common pipelines like SaveCart and LoadCart. In some cases the logic is split into several sub-pipelines
to handle if-than-else situations like used in CreateOrResumeCart.

GetCarts

Name: GetCarts

Description: The pipeline is responsible for performing a search against all carts and return a list
of CartBase instances for carts found, matching the specified search criteria.

The carts might be persisted in both the ECS and/or EA state.

Depending on the location of the main cart repository, the processors configured for
the pipeline will differ between different Connect provider implementations.

Usage: Called via method GetCarts on the Connect API when searching for carts.

Args:

 Request - Contains the search criteria: UserID, CustomerID, CartName,
CartStatus, IsLocked, and ShopName. Is set prior to calling the pipeline.

 Response - Contains the cart objects. Is read after the pipeline is executed.

Processors: GetCartsFromEAState –

Responsibility - To execute query against carts stored in EA states across all
users which matches the input parameters UserID, CustomerID, CartName, and
ShopName.

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 30 of 150

In default implementation, the processor is split into two, named:

 BuildQuery.

 ExecuteQuery. Queries the EA repository

Usage: The processor is generic for searching in EA state and returning lists of
carts. If the external commerce system supports persisting carts then the
processor(s) should be replaced by the custom GetCarts processor querying
against ECS, see below.

Ownership: The processor is provided with Connect

Customization: If more search parameters are needed then the processor should be
inherited and overwritten to search in

 GetCarts –

Responsibility - To execute a query against carts stored in the external commerce
system which matches the input parameters UserID, CustomerID, CartName, and
ShopName.

Usage: If ECS supports persistence of carts, then this processor replaces the
default Connect processor(s) querying against EA state

If not supported, EA state and GetCartsFromEAState processor(s) must be used
instead

Ownership: ECS vendor

Customization: The processor is custom to the ECS. If more search parameters are
needed then the processor should be extended to support that.

CreateOrResumeCart

Name: CreateOrResumeCart

Description: Initiates the creation of a shopping cart and in the process to:

 Load persisted, potentially abandoned cart, if present and return that

 Trigger event in DMS if new cart is created

 Enter user in Engagement Automation plan with ID of new shopping cart

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 31 of 150

The pipeline will call different pipelines depending on whether an existing cart is
found and can be resumed or not.

Usage: Called via method CreateOrResumeCart on the Connect API.

Args:

 Request - Contains the essential cart parameters also used to search for existing
cart. Is set prior to calling the pipeline.

 Response - Contains the cart objects or a list of CartBase instance in case multiple
carts exists that matches the given parameters. Is read by the Cart Provider after
the pipeline is called.

Processors:

 FindCartInEAState –

Responsibility: To locate a cart in the current contact’s / visitor’s EA state which
matches the input parameters UserID, CustomerID, CartName, and ShopName.

If a match is found then the Cart ID is set in custom pipeline argument CartID
(args.CustomData[“CartID”])

The processor is needed to retrieve the cart ID of the existing cart before LoadCart
can be called

Usage: The processor is generic for searching in EA state and returning cart ID for
a cart matching the given input parameters.

Ownership: The processor is provided with Connect

Customization: No immediate need for overwriting the default functionality, unless
further query parameters are introduced

 RunLoadCart –

Responsibility: Is to call pipeline LoadCart and load a cart with given ID. The ID is
specified in parameter CartId.

If cart was not found, cart is null or empty in pipeline arguments

Usage: Mandatory. The processor is generic for calling pipeline LoadCart that loads
a cart by CartID and can be used in other pipelines.

It’s assumed that the CartID to be used for loading cart is stored in customer
pipeline arg “CartID” (args.CustomData[“CartID”])

Pipeline RunResumeCart is assuming that the cart to be resumed is loaded before
it is executed

Ownership: The processor is provided with Connect

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 32 of 150

Customization: No immediate need for overwriting the default functionality.

 RunResumeCart –

Responsibility: Is to call pipeline ResumeCart in order to resume a loaded cart if
possible.

It’s expected that a cart is present in pipeline arguments.

If no cart is present, then the processor will not call pipeline ResumeCart

Usage: Mandatory. The processor is generic for calling pipeline ResumeCart

Ownership: The processor is provided with Connect

Customization: No immediate need for overwriting the default functionality.

 RunCreateCart –

Responsibility: Is to call pipeline CreateCart in order to create a new cart.

It’s expected that no cart is present in pipeline arguments.

If a cart is present, then the processor will not call pipeline CreateCart

Usage: Mandatory. The processor is generic for calling pipeline CreateCart

Ownership: The processor is provided with Connect

Customization: No immediate need for overwriting the default functionality

CreateCart

Name: CreateCart

Description: Creates and saves a new shopping cart and in the process:

 Trigger event in DMS for new cart

 Enter visitor / contact into Engagement Automation plan with new shopping
cart

Usage: Called from pipeline CreateOrResumeCart as one of the branches when no cart
exists

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 33 of 150

Args:

 Request - Contains the same parameters as CreateOrResumeCart pipeline. Is
carried over from CreateOrResumeCart pipeline.

 Response - Contains the cart objects. Is read by the Cart Provider after the pipeline
is called.

Processors:

 CreateCart –

Responsibility: Is to create a new cart, initialize values from arguments and return it.

If a cart already exists in pipeline arguments, it is ignored and will be overwritten.

Usage: Optional. The default processor is generic for creating a domain model cart
and initialize values, but it never calls the ECS.

In some integration scenarios it will be relevant to call the ECS at this point in time
to create a new cart. In that case this processor can be used as a base class and
extended, as it does initialize the cart domain object, or it can be replaced
altogether.

In other integration scenarios the ECS will not be called at this point in time. Instead
it will likely be called when manipulating cart lines or only when saving the cart. It
depends on the system being integrated with.

Ownership: The processor is provided with Connect

Customization: It can be useful to use the processor as a base class and extended
it by calling the ECS after initializing the cart domain model object,

 AddVisitorToEAPlan –

Responsibility: Is to add the current visitor to an EA plan, in this case the
Abandoned Cart EA plan.

The current implementation supports multiple shops. By using an eaPlanProvider
the plan and state IDs can be retrieved. By default the eaPlanProvider tries to find
an EA plan with a name prefixed with the site name. For example, the ECS could
contain a site named Autohaus. According to naming convention, the EA plan must
be named “Autohaus Abandoned Cart”. If a different EA plan name is used, it can
be configured on the site definition item.

Usage: Optional. The processor is generic for adding the visitor to an EA plan, but it
expects to be in the CreateCart pipeline with the CreateCartRequest object in
pipeline args.

The plan and state IDs are retrieved from the eaPlanProvider, which is specified in
the processor parameter and instantiated via Sitecore Factory.

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 34 of 150

Ownership: The processor is provided with Connect

Customization: No immediate need for overwriting the default functionality

 RunSaveCart –

Responsibility: Is to call pipeline SaveCart which saves the specified cart.

Usage: Optional, but should always be called when changes have been made to
the cart, which is the case here. The processor is generic for calling pipeline
SaveCart and can be used in other pipelines.

Ownership: The processor is provided with Connect

Customization: No immediate need for overwriting the default functionality.

 TriggerPageEventForResultCart –

Responsibility: Is to trigger a specified page event and register the cart values:
ExternalCartId, UserId, CartName, CartStatus

The Page Event text is localized by looking up in Sitecore dictionary.

Usage: Optional. The processor is generic for triggering a page event with the
specified parameters from the cart stored in the args.Result argument.

The event to be triggered is specified in processor parameter PageEventName

The event text to be used is specified in processor parameter PageEventText

Ownership: The processor is provided with Connect

Customization: Overwrite the processor if other values from cart should be
registered

ResumeCart

Name: CreateOrResumeCart

Description: Validates and resumes the cart specified in arguments and in the process:

 Change the state to the initial state in abandoned cart Engagement (reboot)

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 35 of 150

 Updates the cart state

 Saves the cart

 Trigger event in DMS

Usage: Called via the Connect API from Sitecore.

Args:

 Request - Contains the search criteria. Is set by the Cart Provider prior to calling
the pipeline.

 Response - Contains the cart objects. Is read by the Cart Provider after the pipeline
is called.

Processors:

 CheckCanBeResumed –

Responsibility: Is to check if given cart can be resumed. If visitor is not already in
the abandoned cart EA plan the pipeline is aborted and if the visitor is already in the
initial state, it is also aborted.

Also sets three parameters in pipeline args that are used in the processors listed in
parentheses:

 CartSourceStateId (MoveVisitorToInitialState)

 CartDestinationStateId (MoveVisitorToInitialState)

 PreviousStateName (TriggerPageEventForResumedCart)

Usage: Mandatory. The processor checks if the visitor is already in the plan or not.
If not, there is no cart to resume.

Ownership: The processor is provided with Connect

Customization: No obvious customization needed

 ChangeCartStatus –

Responsibility: Is to update the cart status field with the value “InProcess” taken
from constant CartStatus.InProcess

Usage: Optional. The processor is generic but the status value set on cart is fixed to
InProcess.

Ownership: The processor is provided with Connect

Customization: The processor could be updated to take the state value from
parameter instead of constant in code.

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 36 of 150

 MoveVisitorToInitialState –

Responsibility: Is to move the current visitor between two states of an EA plan, in
this case the Abandoned Cart EA plan.

Usage: Optional. The processor is generic for moving a visitor to initial state of EA
plan, but it expects to be in the CreateCart pipeline with the CreateCartRequest
object in pipeline args.

The source and destination state IDs are read from custom pipeline arguments:

 “CartSourceStateId”

 ”CartDestinationStateId”

Ownership: The processor is provided with Connect

Customization: No immediate need for overwriting the default functionality

 RunSaveCart –

Responsibility: Is to call pipeline SaveCart which saves the specified cart.

Usage: Mandatory. The processor is generic for calling pipeline SaveCart and can
be used in other pipelines.

Ownership: The processor is provided with Connect

Customization: No immediate need for overwriting the default functionality.

 TriggerPageEventForResumedCart –

Responsibility: Is to trigger a specified page event when resuming the cart and
register the cart values:

 ExternalCartId, UserId, CartName, CartStatus, StateName (containing the
previous state that it was moved from)

The Page Event text is localized by looking up in Sitecore dictionary.

Usage: Optional. The processor is specific for resuming a cart and for triggering a
page event with the specified parameters from the cart stored in the args.Result
argument.

The value for previous state is found in pipeline args “PreviousState” and is inserted
in the page event text along with the ExternalCartId

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 37 of 150

The event text to be used is specified in processor parameter PageEventText

Ownership: The processor is provided with Connect

Customization: Overwrite the processor if other values from cart should be
registered or the text formatting should be different

LoadCart

Name: LoadCart

Description: Loads the cart that matches the specified criteria. For example, ID and ShopName.

This pipeline is responsible for reading data for a specific cart that is managed by
the commerce system. This pipeline reads the cart data from the commerce system
and/or from Engagement Automation state.

Usage: 1. Called directly via the Connect API method LoadCart from Sitecore.

2. Called indirectly via the Connect API methods CreateOrResumeCart

Args:

 Request - Contains the criteria that determine which cart should be retrieved. Is set
prior to calling the pipeline.

 Response - Contains the cart object after the pipeline is called.

Processors:

 LoadCartFromEAState –

Responsibility:

Load existing cart from EA state with given CartID and in the shop specified with
parameter ShopName

For performance reasons, the default implementation works as follows:

 First carts are loaded from current visitor / contact EA state data and filtered
by the given parameters. If found, it is written to pipeline result args and
execution stops.

 If not found, then all carts across all contacts are loaded and filtered by the
given parameters. Searching across all contacts is an expensive operation.

 If cart is found in EA state, it is written to pipeline Result arg.

Usage: The processor is generic for loading a cart from EA state.

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 38 of 150

The processor might be used alone in pipeline LoadCart, if cart persistence is not
available in the ECS or if handling of carts occurs in Sitecore alone.

It might also be left out of the pipeline if the ECS manage the cart repository alone.

Some ECS systems does not provide all the information specified in the cart
domain model and a hybrid configuration might be used where the main data is
read from the ECS and augmented with additional cart data stored in EA state by
inserting an additional processor.

Abandoned carts might be purged from the ECS but still remain in EA state in
Sitecore. In that case it might make sense to have both processors in the pipeline.
Sitecore will then act as a backup storage for carts.

Ownership: The processor is provided with Connect

Customization: No immediate need for overwriting the default functionality

 LoadCart –

Responsibility:

Load existing cart from ECS with given CartID and in the shop specified with
parameter ShopName

Usage: The processor is specific for loading a cart from ECS.

The processor might be used alone in pipeline LoadCart if cart persistence is
available in the ECS. See also scenarios in description for LoadCartFromEAState
processor.

Some ECS systems does not provide all the information specified in the cart
domain model and a hybrid configuration might be used where the main data is
read from the ECS and augmented with additional cart data stored in EA state by
inserting an additional processor.

If used in combination with LoadCartFromEAState, even though the cart might
already be loaded from EA state, it is important to check with the ECS and load cart
from there to ensure the latest version is used.

If cart is found in external commerce system it can overwrite or merge with the cart
already stored in pipeline Response arg. It’s up to the Connect provider
implementation with the ECS.

Ownership: The processor is provided by the ECS

Customization: Must be built specifically for the ECS.

SaveCart

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 39 of 150

Name: SaveCart

Description: Saves the cart both to the external commerce system and in Engagement
Automation state.

Usage: Called from other service layer methods, but rarely, if never called explicitly

Args:

 Request - Contains the criteria that determine which cart should be retrieved. Is set
prior to calling the pipeline.

 Response - Contains the cart object after the pipeline is called.

Processors:

 SaveCart –

Responsibilitty:

Saves the given cart to the ECS

Usage: The processor is specific for saving a cart to the ECS.

The processor should not be used alone in pipeline SaveCart because the feature
for resuming existing carts is depending on the cart being stored in EA state as well.
The processor FindCartInEAState is looking up the cart in EA state in order to get
the CartId for loading the cart with LoadCart from ECS:

Some ECS systems does not provide all the information specified in the cart
domain model and a hybrid configuration might be used where the main data is
saved to the ECS and the additional cart data is stored in EA state by.

In some ECS implementations the SaveCart pipeline is the first and only place the
ECS system is provided a cart from Connect.

Since the ECS is the primary repository for carts, it is assumed that the unique
CartID key is provided by the ECS.

Ownership: The processor is provided by the ECS

Customization: Must be built specifically for the ECS.

 SaveCartToEAState –

Responsibility:

Saves the cart to EA state

Usage: Mandatory. The processor is generic for saving a cart to EA state.

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 40 of 150

The processor might be used alone in pipeline LoadCart, if cart persistence is not
available in the ECS or if handling of carts occurs in Sitecore alone.

The processor should be used in pipeline SaveCart because the feature for
resuming existing carts is depending on the cart being stored in EA state as well.
The processor FindCartInEAState is looking up the cart in EA state in order to get
the CartId for loading the cart with LoadCart from ECS:

Some ECS systems does not provide all the information specified in the cart
domain model and a hybrid configuration might be used where the main data is
read from the ECS and augmented with additional cart data stored in EA state by
inserting an additional processor.

Abandoned carts might be purched from the ECS but still remain in EA state in
Sitecore. In that case it might make sense to have both processors in the pipeline.
Sitecore will then act as a backup storage for carts.

Ownership: The processor is provided with Connect

Customization: No immediate need for overwriting the default functionality

.

AddCartLines

Name: AddCartLines

Description: This pipeline is responsible for adding a new line to the shopping cart and recording
a corresponding page event in DMS. This happens when a product is added to the
cart.

Usage: Called from Sitecore.

Args:

 Request - Contains the cart to be updated, along with what lines should be added
to the cart.

Is set prior to calling the pipeline.

 Response - Contains the updated cart object after the pipeline is called.

Processors:

 CheckIfLocked –

Responsibility: Checks if the cart is locked and abort the pipeline if so, returning
SystemMessages to signal the locked state

Usage: Optional. The processor is generic for checking if cart is locked. The
processor is and should be used in all pipelines that potentially modify the cart
content

Ownership: The processor is provided with Connect

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 41 of 150

Customization: No immediate need for overwriting the default functionality

 AddLinesToCart –

Responsibility: Adds the given lines to the provided cart.

Calling this method will always add the given lines to the existing collection of lines
in the cart, even if lines already exist on the cart containing the same product.
Alternatively UpdateLinesOnCart can be called if a line already exists with a product
where the quantity simply should be adjusted.

Usage: Optional. The processor is generic for adding lines to cart, but potentially
should be replaced by an ECS specific implementation.

Ownership: The processor is provided with Connect

Customization: The default implementation operates on the cart domain model in
Sitecore only.

In most ECS integrations it will be relevant to inherit and overwrite or replace this
implementation and call the ECS, so that the changes to cart are passed on and
any business logic can be applied.

 RunSaveCart -

Responsibility: Is to call pipeline SaveCart which saves the specified cart.

Usage: Optional, but should always be called when changes have been made to
the cart, which is the case here. The processor is generic for calling pipeline
SaveCart and can be used in other pipelines.

Ownership: The processor is provided with Connect

Customization: No immediate need for overwriting the default functionality

 TriggerPageEventsForCartLines –

Responsibility: Is to trigger a specified page event when adding lines to cart and
register the values:

 Product ID, QTY, Price and Currency

The event to be triggered is passed in as parameter as well as the Page Event
Text.

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 42 of 150

In this case the event is “Lines Added To Cart”. The Page Event text is localized by
looking up in Sitecore dictionary.

Usage: Optional. The processor is generic for triggering a page event when
modifying cart lines

Ownership: The processor is provided with Connect

Customization: Overwrite the processor if other values from cart should be
registered or the text formatting should be different

RemoveCartLines

Name: RemoveCartLines

Description: Responsibility is to remove cart lines from cart

Usage: Called from Sitecore.

Args:

 Request - Contains the cart to be updated along with the cart lines to be removed

Is set prior to calling the pipeline.

 Response - Contains the updated cart object after the pipeline is called.

Processors:

 CheckIfLocked –

Responsibility: Checks if the cart is locked and abort the pipeline if so, returning an
SystemMessages to signal the locked state

Usage: Optional. The processor is generic for checking if cart is locked. The
processor is and should be used in all pipelines that potentially modify the cart
content

Ownership: The processor is provided with Connect

Customization: No immediate need for overwriting the default functionality

 RemoveLinesFromCart –

Responsibility: Removes the given lines from the provided cart.

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 43 of 150

The list of lines to remove must be references directly to the lines in the CartLines
collection on the cart. They will be removed by reference: cart.CartLines =
cart.CartLines.Except(request.CartLines).ToList();

Usage: Optional. The processor is generic for removing lines from cart, but
potentially should be replaced by an ECS specific implementation.

Ownership: The processor is provided with Connect

Customization: The default implementation operates on the cart domain model in
Sitecore only.

In most ECS integrations it will be relevant to inherit and overwrite or replace this
implementation and call the ECS, so that the changes to cart are passed on and
any business logic can be applied.

 SaveCart –

Responsibility: Is to call pipeline SaveCart which saves the specified cart.

Usage: Optional, but should always be called when changes have been made to
the cart, which is the case here. The processor is generic for calling pipeline
SaveCart and can be used in other pipelines.

Ownership: The processor is provided with Connect

Customization: No immediate need for overwriting the default functionality

 TriggerPageEventsForCartLines –

Responsibility: Is to trigger a specified page event when adding lines to cart and
register the values:

 Product ID, QTY, Price and Currency

The event to be triggered is passed in as parameter as well as the Page Event
Text. In this case the event is “Lines Removed From Cart”. The Page Event text is
localized by looking up in Sitecore dictionary.

Usage: Optional. The processor is generic for triggering a page event when
modifying cart lines

Ownership: The processor is provided with Connect

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 44 of 150

Customization: Overwrite the processor if other values from cart should be
registered or the text formatting should be different

UpdateCartLines

Name: UpdateCartLines

Description: Responsibility is to update lines on cart

Usage: Called from Sitecore.

Args:

 Request - Contains the cart along with the cart lines to be updated

Is set prior to calling the pipeline.

 Response - Contains the updated cart object after the pipeline is called.

Processors:

 CheckIfLocked –

Responsibility: Checks if the cart is locked and abort the pipeline if so, returning an
SystemMessages to signal the locked state

Usage: Optional. The processor is generic for checking if cart is locked. The
processor is and should be used in all pipelines that potentially modify the cart
content

Ownership: The processor is provided with Connect

Customization: No immediate need for overwriting the default functionality

 UpdateLinesOnCart –

Responsibility: To update the given lines on the provided cart.

The default implementation doesn’t process the lines on the original cart, but simple
return the cart that was passed in and that already had its Cartlines updated.

Hence, the list of updated lines must be references to the CartLines collection on
the cart.

Usage: Optional. The processor is generic for updating lines on cart, but potentially
should be replaced by an ECS specific implementation.

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 45 of 150

Ownership: The processor is provided with Connect

Customization: The default implementation operates on the cart domain model in
Sitecore only.

In most ECS integrations it will be relevant to inherit and overwrite or replace this
implementation and call the ECS, so that the changes to cart are passed on and
any business logic can be applied.

 SaveCart –

Responsibility: Is to call pipeline SaveCart which saves the specified cart.

Usage: Optional, but should always be called when changes have been made to
the cart, which is the case here. The processor is generic for calling pipeline
SaveCart and can be used in other pipelines.

Ownership: The processor is provided with Connect

Customization: No immediate need for overwriting the default functionality

 TriggerPageEventsForCartLines –

Responsibility: Is to trigger a specified page event when adding lines to cart and
register the values:

 Product ID, QTY, Price and Currency

The event to be triggered is passed in as parameter as well as the Page Event
Text. In this case the event is “Lines Updated On Cart”. The Page Event text is
localized by looking up in Sitecore dictionary.

Usage: Optional. The processor is generic for triggering a page event when
modifying cart lines

Ownership: The processor is provided with Connect

Customization: Overwrite the processor if other values from cart should be
registered or the text formatting should be different

DeleteCart

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 46 of 150

Name: DeleteCart

Description: Responsibility is to delete a cart permanently:

 The cart is deleted.

 Trigger event in DMS telling the cart is deleted.

Usage: Called from Sitecore.

Args:

 Request - Contains the cart to be deleted

Is set prior to calling the pipeline.

 Response – SystemMessages

Processors:

 CheckIfLocked –

Responsibility: Checks if the cart is locked and abort the pipeline if so, returning an
SystemMessages to signal the locked state

Usage: Optional. The processor is generic for checking if cart is locked. The
processor is and should be used in all pipelines that potentially modify the cart
content

Ownership: The processor is provided with Connect

Customization: No immediate need for overwriting the default functionality

 DeleteCart –

Responsibility: Deletes and removes cart from storage in ECS

Usage: Mandatory

Ownership: The processor is provided by the ECS

Customization: Must be built specifically for the ECS.

 DeleteCartFromEAState –

Responsibility: Locates and deletes cart from EA state

Usage: Optional. The processor is generic for deleting cart in EA state.

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 47 of 150

Ownership: The processor is provided with Connect

Customization: No immediate need for overwriting the default functionality

 TriggerPageEventForRequestCart –

Responsibility: Is to trigger a specified page event when deleting a cart and register
the values:

 ExternalCartId, UserId, CartName, CartStatus

The event to be triggered is passed in as parameter as well as the Page Event
Text. In this case the event is “Cart Deleted”. The Page Event text is localized by
looking up in Sitecore dictionary.

Usage: Optional. The processor is generic for triggering a page event for
processors that takes an argument based on parameter type CartRequest

Ownership: The processor is provided with Connect

Customization: Overwrite the processor if other values from cart should be
registered or the text formatting should be different

UpdateCart

Name: UpdateCart

Description: Responsibility is to pass an updated cart to the external commerce system

Trigger event in DMS telling the cart is being updated.

Usage: Called from Sitecore.

Args:

 Request - Contains the cart and the data to be updated in Cart Base

Is set prior to calling the pipeline.

 Response - Contains the updated cart object after the pipeline is called.

Processors:

 CheckIfLocked –

Responsibility: Checks if the cart is locked and abort the pipeline if so, returning an
SystemMessages to signal the locked state

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 48 of 150

Usage: Optional. The processor is generic for checking if cart is locked. The
processor is and should be used in all pipelines that potentially modify the cart
content

Ownership: The processor is provided with Connect

Customization: No immediate need for overwriting the default functionality

 UpdateCart –

Responsibility: To update the cart with the updated values of the cart body
(CartBase object only, not lines etc.).

The default implementation will update all default properties on CartBase except
“CustomerID”; “CartName”, “ShopName”. Everything including null and black values
are included.

Usage: Optional. The processor is generic for updating the cart body.

Ownership: The processor is provided with Connect

Customization: In case the default Connect domain model is customized, the
processor should be overwritten to include the customized properties.

 TriggerPageEventForRequestCartChanges –

Responsibility: Is to trigger a specified page event when deleting a cart and register
the values:

 CustomerId, CartName, ShopName

The event to be triggered is passed in as parameter as well as the Page Event
Text. In this case the event is “Cart Deleted”. The Page Event text is localized by
looking up in Sitecore dictionary.

Usage: Optional. The processor is generic for triggering a page event for
processors that takes an argument based on parameter type UpdateCartRequest

Ownership: The processor is provided with Connect

Customization: Overwrite the processor if other values from cart should be
registered or the text formatting should be different

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 49 of 150

 RunSaveCart –

Responsibility: Is to call pipeline SaveCart which saves the specified cart.

Usage: Optional, but should always be called when changes have been made to
the cart, which is the case here. The processor is generic for calling pipeline
SaveCart and can be used in other pipelines.

Ownership: The processor is provided with Connect

Customization: No immediate need for overwriting the default functionality

LockCart

Name: LockCart

Description: Responsibility is to set the cart in a locked state and prevent any modifications

Usage: Called from Sitecore.

Args:

 Request - Contains the cart to be locked

Is set prior to calling the pipeline.

 Response - Contains the cart object after the pipeline is called.

Processors:

 LockCart –

Responsibility: Is to set the cart to locked state (IsLocked = true)

Usage: Optional. The processor is generic for locking a cart.

Ownership: The processor is provided with Connect

Customization: The default implementation does not call the ECS. It might be
relevant to overwrite or replace the implementation to call the ECS when locking.

 RunSaveCart –

Responsibility: Is to call pipeline SaveCart which saves the specified cart.

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 50 of 150

Usage: Optional, but should always be called when changes have been made to
the cart, which is the case here. The processor is generic for calling pipeline
SaveCart and can be used in other pipelines.

Ownership: The processor is provided with Connect

Customization: No immediate need for overwriting the default functionality

 TriggerPageEventForRequestCart –

Responsibility: Is to trigger a specified page event when deleting a cart and register
the values:

 ExternalCartId, UserId, CartName, CartStatus

The event to be triggered is passed in as parameter as well as the Page Event
Text. In this case the event is “CartLocked”. The Page Event text is localized by
looking up in Sitecore dictionary.

Usage: Optional. The processor is generic for triggering a page event for
processors that takes an argument based on parameter type CartRequest

Ownership: The processor is provided with Connect

Customization: Overwrite the processor if other values from cart should be
registered or the text formatting should be different

UnlockCart

Name: UnlockCart

Description: Responsibility is to set the cart in an unlocked state

Usage: Called from Sitecore.

Args:

 Request - Contains the cart to unlock

Is set prior to calling the pipeline.

 Response - Contains the cart object after the pipeline is called.

Processors:

 UnlockCart –

Responsibility: Is to set the cart to not-locked state (IsLocked = false)

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 51 of 150

Usage: Optional. The processor is generic for unlocking a cart.

Ownership: The processor is provided with Connect

Customization: The default implementation does not call the ECS. It might be
relevant to overwrite or replace the implementation to call the ECS when unlocking.

 RunSaveCart –

Responsibility: Is to call pipeline SaveCart which saves the specified cart.

Usage: Optional, but should always be called when changes have been made to
the cart, which is the case here. The processor is generic for calling pipeline
SaveCart and can be used in other pipelines.

Ownership: The processor is provided with Connect

Customization: No immediate need for overwriting the default functionality

 TriggerPageEventForRequestCart –

Responsibility: Is to trigger a specified page event when deleting a cart and register
the values:

 ExternalCartId, UserId, CartName, CartStatus

The event to be triggered is passed in as parameter as well as the Page Event
Text. In this case the event is “Cart Unlocked”. The Page Event text is localized by
looking up in Sitecore dictionary.

Usage: Optional. The processor is generic for triggering a page event for
processors that takes an argument based on parameter type CartRequest

Ownership: The processor is provided with Connect

Customization: Overwrite the processor if other values from cart should be
registered or the text formatting should be different

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 52 of 150

MergeCart

Name: MergeCart

Description: Responsibility is to merge a User cart with an Anonymous cart.

Usage: Called from Sitecore.

Args:

 Request - Contains the User cart and the Anonymous cart.

 Response - Contains the merged User cart.

Processors:

 MergeCart –

Responsibility: is to merge the User and Anonymous carts.

Usage: Optional. The processor is generic for merging carts.

Ownership: The processor is provided with Connect

Customization: The default implementation does not call the ECS. It might be
relevant to overwrite or replace the implementation if custom merging rules are
required.

 RunSaveCart –

Responsibility: Is to call pipeline SaveCart which saves the specified cart.

Usage: Optional, but should always be called when changes have been made to
the cart, which is the case here. The processor is generic for calling pipeline
SaveCart and can be used in other pipelines.

Ownership: The processor is provided with Connect

Customization: No immediate need for overwriting the default functionality

 RunDeleteCart -

 Responsibility: Is to call pipeline DeleteCart which deletes the specified cart, which
in this case is the cart specified in parameter Anonymous Cart

Usage: Optional, depending on whether the result of the merge is to remove one of
the carts. Otherwise DeleteCart can be call explicitly

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 53 of 150

Ownership: The processor is provided with Connect

Customization: No immediate need for overwriting the default functionality

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 54 of 150

2.2 Pricing

2.2.1 The Pricing Domain Model

Note

The information passed in the service layer from Connect framework must be enough to meet the
requirements of the external commerce system in order to do its business logic. The Connect framework
doesn’t perform business logic and therefore the information passed back from the external commerce
system is for informational purposes.

Class: Price

Price represents the amount that a product costs. The price is used to determine what a customer has to
pay for a single product, but the total cost is represented by the Total object, which takes additional
information into consideration like tax, shipping etc.

Price is returned by the Pricing Service Provider as a part of the output from the GetProductPrices
method. A product may have multiple prices and multiple prices might be returned from a single call.
Hence a collection of Price objects is the output from the Pricing Service Provider when a single product
is priced.

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 55 of 150

Name Type Description

PriceType String Examples are "List Price"(mandatory) and
"Customer Price" (mandatory). Customer price
means the price that the customer will have to
pay taking all parameters into account.

Other custom PriceTypes might be "sale price"
and “break price”.

There might be several prices for a single product
with a given PriceType (e.g. break price), which is
where the conditions are used to distinguish
when the price is applicable.

Description String Arbitrary text description for the price
Amount Float The price amount
CurrencyCode String Currency in which the price amount is given
Conditions List<PriceCondition> Used for break pricing and campaigns, where a

specific price is only good when certain
conditions are met (the customer has bought at
least 5 products or the date is in the year 2013).

Class: Price Condition

Price Condition represents a condition that must be met in order for a price to apply. This interface must
be extended for each commerce system with the actual ConditionTypes, operators and possible return
values depends.

Note

The condition information is used for presentation and triggering engagement and not for calculation, so
the value can be an arbitrary string.

Name Type Description

ConditionType String Examples are "quantity", "date", and "total"
Description String
Operator String Examples are "greater than", "equal to" and

“between”
Sequence Int Represents the order in which the condition is

evaluated.

For example, one condition may only apply to
"shop A" and another condition may only apply to
more than 5 items. If the customer is in "shop A"
and has more than 5 items, which pricing should
be used? This value determines this. Conditions
apply in ascending order

Value String Break prices
Break prices depends on the quantity which is
why the ConditionType will be Quantity.
In case of ConditionType Quantity the value will
typically either be:

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 56 of 150

 a single integer with operator “greater
than ‘>’”

 a range like “5-10” with operator
“between”

Campaign prices
In case of ConditionType Date the value will
typically either be:

 a single date with operator “greater than
‘>’” or “less than ‘<’”

 a date range like “A - B” with operator
“between”

Class: Total

Total represents the total price a customer will have to pay for a product, cart-line or entire cart at a
specific point in time including charges, discounts, coupon codes, tax and shipping etc.

Total is the output from the Pricing Service Provider when a collection of products is priced as a unit (aka
bundling). It provides a total price for the entire collection.

Name Type Description

Description String Arbitrary text
Amount Float Representing the total amount
CurrencyCode String A code referring to the currency
TaxTotal TaxTotal A reference to TaxTotal describing the tax and

how it is combined from tax sub-totals

Class: TaxTotal

TaxTotal represents the tax that applies to something with a Total. Any object with a Total also has a
TaxTotal.

Name Type Description

Id String This value is only available if an external system
is used to perform the tax lookup and the external
system provides an id (for audit purposes, for
example).

Description String Arbitrary text
Amount Float Representing the total tax amount. Currency is

assumed to be the same as for the Total
TaxSubtotals List<TaxSubtotal> A list of entries that affect the total tax

Class: TaxSubtotal

TaxSubtotal represents a specific tax that applies to an object, and the amount of the tax. This level of
granularity is required in some countries.

Name Type Description

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 57 of 150

TaxSubtotalType String Examples are "CA state tax", "NYC city tax",
"special levy 003a"

Description String
Percent Float Percentage per unit, zero if fixed value is used
PerUnitAmount Float Fixed value per unit, zero if percentage is used
BaseUnitMeasure Float The number of items in a unit for which the fixed

value (PerUnitAmount) applies to. Not applicable
if percentage is used.

2.2.2 Pricing Service Methods

Service providers are wrapper objects designed to make it easier to interact with Connect pipelines. The
providers implement no logic other than calling Connect pipelines. All of the business logic is
implemented in the pipeline processors.

The Pricing Service Provider contains the following methods for interacting with pricing data.

GetProductPrices

Description: Gets the prices for a specific product.

Usage: Called when Sitecore needs the prices for a specific product.
Signature: GetProductPricesResult GetProductPrices(GetProductPricesRequest

request)

Parameters:
 request.ProductId - Required
 Request.UserId - Prices typically vary depending on the actual

user
 Request.CurrencyCode - Required
 Request.Location - Prices often depends on the location. Location

can be a city or a state.
 Request.Quantity - If not specified, quantity is assumed to be 1.
 Request.DateTime - Needed when campaigns promote products at

discount prices within a certain period of time
 Request.ShopName - Multi-shop support
 Request.PriceTypeIds - List of the types of prices to retrieve. If not

specified, only the base/list price is returned.

Examples include list, break, and sale prices.
The actual PriceTypeIds depends on the
specific Connect provider implementation

Returns:
 result.Prices - A collection of price objects
 result.ExternalSystem

Messages -

Collection of messages from the external
system. This is how error conditions can be
reported.

Exceptions:
 No exceptions are thrown by this method.

Usage Example:

var pricingServiceProvider = new PricingServiceProvider();

// Create a GetProductPricesRequest object, specify the product's ID and do not

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 58 of 150

// specify any price types. Default price type is ListPrice

var request = new GetProductPricesRequest("Audi A8L");

// Call the service provider and receive the result.

var result = pricingServiceProvider.GetProductPrices(request);

// Result prices contains the list price only.

var price = result.Prices.First().Value.Amount;

// You can use the GetProductPrices to get the prices of a specific type.

// The following sample shows an example of retrieving a price of type Customer

// opposed to the default List price type:

// Create a GetProductPricesRequest object, specify the product's ID and price type

// 'Customer'.

request = new GetProductPricesRequest("Audi A8L", "Customer");

// Call service provider and receive the result.

var result2 = pricingServiceProvider.GetProductPrices(request);

// Result prices contains the Customer price only.

var price2 = result.Prices.First().Value.Amount;

GetProductBulkPrices

Description: Gets the bulk prices for a specific product.

Usage: Called when Sitecore needs the break prices for a specific product.
Signature: GetProductBreakPricesResult

GetProductBreakPrices(GetProductBreakPricesRequest request)

Parameters:
 request.ProductId - Required
 Request.UserId - Prices typically vary depending on the actual

user
 Request.CurrencyCode - Required
 Request.Location - Prices often depends on the location.

Location can be a city or a state.
 Request.Quantity - If not specified, quantity is assumed to be 1.
 Request.DateTime - Needed when campaigns promote products at

discount prices within a certain period of time
 Request.ShopName - Multi-shop support

Returns:
 result.Prices - A collection of price objects
 result.ExternalSystem

Messages -

Collection of messages from the external
system. This is how error conditions can be
reported.

Exceptions:
 No exceptions are thrown by this method.

Usage Example:

var pricingServiceProvider = new PricingServiceProvider();

// Create a GetProductPricesRequest object, specify the product's ID and price type

// 'Customer'. The price type argument is optional and defaults to List.

var request = new GetProductBulkPricesRequest(

 new List<string>()

 {

 "Audi A8L",

 "Renault Grand Scenic",

 "Skoda Octavia RS"

 },

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 59 of 150

 "Customer");

// Call service provider and receive the result.

var result = pricingServiceProvider.GetProductBulkPrices(request);

// Result contains a dictionary of <key, value> pairs, where the key is the

// product ID and the value represent the corresponding Price.

var price = result.Prices["Audi A8L"].Amount;

GetCartTotal

Description: Gets the price for a specific cart.

Usage: Called when Sitecore needs the price for a specific cart.
Signature: GetCartPriceResult GetCartPrice(GetCartPriceRequest request)

Parameters:
 request.Cart - Required
 request.UserId - Prices typically vary depending on the actual

user
 Request.CurrencyCode - Required
 Request.Location - Prices often depends on the location. Location

can be a city or a state
 Request.ShopName - Multi-shop support
 Request.DateTime - Needed when campaigns promote products at

discount prices within a certain period of time
Returns:

 result.Cart - An instance of a Total
 result.ExternalSystem

Messages -

Collection of messages from the external
system. This is how error conditions can be
reported.

Exceptions:
 No exceptions are thrown by this method.

Usage Example:

var cartServiceProvider = new CartServiceProvider();

var pricingServiceProvider = new PricingServiceProvider();

// Create LoadCart request.

var cartRequest = new CreateOrResumeCartRequest("MyShop", "MyCart");

// Call CreateOrResumeCart and get the cart

var cart = cartServiceProvider.CreateOrResumeCart(cartRequest).Cart

// Create a GetCartTotalRequest object, specify the Cart and shop name

var request = new GetCartTotalRequest {Cart = cart, ShopName = "MyShop"};

// Call service provider and receive the result.

var result = pricingServiceProvider.GetCartTotal(request);

// Result contains the updated cart augmented with Total, TaxTotal,

// and TaxSubTotal instances

var cartTotal = result.Cart.Total.Amount;

2.2.3 Pricing Pipelines

GetProductPrices

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 60 of 150

Name: GetProductPrices

Description: Gets the price object that matches the specified criteria.

This pipeline is responsible for reading pricing data from a commerce system.
This pipeline requests product pricing information from the commerce system and
then converts the output into the proper Connect format.

Usage: Called by the Pricing Service Provider.
Args Parameters:

 Request - Includes the search criteria. Is set by the
Pricing Service Provider prior to calling the
pipeline.

 Response - Includes the price collection object. Is read by
the Pricing Service Provider after the pipeline
is called.

Processors:
 GetProductPrices - Retrieves the prices specified by

request.ProductTypeIds.

GetProductBreakPrices

Name: GetProductBreakPrices

Description: Gets the break price objects with corresponding conditions that matches the
specified criteria.

This pipeline is responsible for reading break pricing data from a commerce
system. This pipeline requests product pricing information from the commerce
system and then converts the output into the proper Connect format.

Usage: Called by the Pricing Service Provider.
Args Parameters:

 Request - Includes the search criteria. Is set by the
Pricing Service Provider prior to calling the
pipeline.

 Response - Includes the price collection object. Is read by
the Pricing Service Provider after the pipeline
is called.

Processors:
 EvaluatePriceConditions

-

In a case where multiple prices exist for the
product, determine which price applies.
With break prices several prices needs to be
returned and conditions created.
It’s the responsibility of this processor to build
the conditions with the associated prices.
For more info, see definition of condition

GetCartTotals

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 61 of 150

Name: GetCartTotals

Description: Gets the totals object that matches the specified criteria.

This pipeline is responsible for reading pricing data from a commerce system.
This pipeline converts the contents of a Connect cart into a format the commerce
system can understand, requests the commerce system calculate the totals, and
then converts the output into the proper Connect format.

Usage: Called by the Pricing Service Provider.
Args

Parameters:

 Request - Includes the search criteria. Is set by the
Pricing Service Provider prior to calling the
pipeline.

 Response - Includes the totals for the cart. Is read by the
Pricing Service Provider after the pipeline is
called.

Processors:
 ApplyCartAdjustments - Adjustments represent charges or discounts

that needs to be resolved and applied. For
example,
discount codes/promotions, special charges
for products

 GetTaxesForCart - Taxes might be calculated by a separate
service

 GetShippingChargesFor

Cart -

Shipping might be calculated by a separate
service

 GetPricesForCart - Does the final calculations based on content
of cart

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 62 of 150

2.3 Order

2.3.1 The Order Domain Model

Class: Order

The Order class is responsible for representing an order.

Name Type Description

OrderId String Unique identifier for the order in the commerce
system. This can be used to get a reference to
the order using the commerce system's native
API.
Will typically be empty until an order has been
created in external system

Class: OrderHeader

The OrderHeader class is responsible for representing an order header.

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 63 of 150

Name Type Description

OrderId String Unique identifier for the order in the commerce
system. This can be used to get a reference to
the order using the commerce system's native
API.
Will typically be empty until an order has been
created in external system

2.3.2 Order Service Methods

Service providers are wrapper objects designed to make it easier to interact with Connect pipelines. The
providers implement no logic other than calling Connect pipelines. All of the business logic is
implemented in the pipeline processors.

The Order Service Provider contains the following methods for interacting with order data.

SubmitVisitorOrder

Name: SubmitVisitorOrder

Description: Creates an order based on the shopping cart. Calls the pipeline
"SubmitVisitorOrder"

Usage: Called from Sitecore when visitor is submitting the shopping cart to create an order.
Signature: SubmitVisitorOrderResult

SubmitVisitorOrder(SubmitVisitorOrderRequest request)

Input:
 Cart – Cart. An instance of the shopping cart

Output:
 Order – Cart.

In case of success, an order is returned and because order is inherited from Cart
that will work fine but it needs to be cast as an order
In case of failure, an instance of the cart object is returned, potentially modified and
augmented with more data and error comments

 SystemMessages - Collection of messages from the external system.

Usage Example:

var cartService = new CartServiceProvider();

// get the cart

var cart = cartService.CreateOrResumeCart(new CreateOrResumeCartRequest("MyShop",

"Me")).Cart;

// add parties, payment and shipping info

cart.Parties = new List<Party>

{

 new Party() { ExternalId = "1", PartyId = "{F73904C0-2A45-4A2F-A99B-F934ABDCFC99}",

FirstName = "Joe", LastName = "Smith", Address1 = "123 Street", City = "Ottawa", State =

"Ontario", Country = "Canada" },

 new Party() { ExternalId = "2", PartyId = "{294B7DD1-7397-4322-996C-E87E592EF621}",

FirstName = "Jane", LastName = "Smith", Address1 = "234 Street", City = "Toronto", State =

"Ontario", Country = "Canada" }

};

cart.BuyerCustomerParty = new CartParty() { ExternalId = "1", PartyID = "{F73904C0-2A45-

4A2F-A99B-F934ABDCFC99}" };

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 64 of 150

cart.AccountingCustomerParty = new CartParty() { ExternalId = "2", PartyID = "{294B7DD1-

7397-4322-996C-E87E592EF621}" };

cart.Payment = new List<PaymentInfo>

{

 new PaymentInfo() { ExternalId = "1" },

 new PaymentInfo() { ExternalId = "2" },

};

cart.Shipping = new List<ShippingInfo>

{

 new ShippingInfo() { ExternalId = "1" },

 new ShippingInfo() { ExternalId = "2" },

};

cartService.SaveCart(new SaveCartRequest(cart));

var orderService = new OrderServiceProvider();

var request = new SubmitVisitorOrderRequest(cart);

var result = orderService.SubmitVisitorOrder(request);

var order = result.Order;

var orderId = order.OrderID;

GetVisitorOrder

Name: GetVisitorOrder

Description: Get the order by Id placed by the visitor. Calls the pipeline " GetVisitorOrder"
Usage: Called from Sitecore when order details are needed for specific order.

Signature: GetVisitorOrderResult GetVisitorOrder(GetVisitorOrderRequest request)

Input:
 ShopName –

The name of the shop
 OrderId –

The ID of the order
 CustomerID – Mandatory

The ID of the customer / visitor / contact
If the customer ID is not provided there is a potential security risk, that any visitor
can access orders from all customers

Output:
 Order – An instance of the order object is returned. The order object is created by

the external commerce system.
 SystemMessages - Collection of messages from the external system.

Usage Example:

var orderService = new OrderServiceProvider();

// need a valid order id for the first param

var visitorOrderRequest = new GetVisitorOrderRequest("Order_7777", "Me", "MyShop");

var result = orderService.GetVisitorOrder(visitorOrderRequest);

GetVisitorOrders

Name: GetVisitorOrders

Description: Get the order summary data of orders placed by the given visitor. Calls the pipeline
" GetVisitorOrders"

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 65 of 150

Usage: Called from Sitecore when order history is needed for visitor.
Signature: GetVisitorOrdersResult GetVisitorOrders(GetVisitorOrdersRequest request)

Input:
 ShopName -

The name of the shop
 CustomerId – Id of the buyer customer party

Output:
 IReadOnlyCollection<OrderBase> – An instance of the order object is returned.

The order object is created by the external commerce system.
 SystemMessages - Collection of messages from the external system.

Usage Example:

var orderService = new OrderServiceProvider();

var visitorOrdersRequest = new GetVisitorOrdersRequest("Me", "MyShop");

var result = orderService.GetVisitorOrders(visitorOrdersRequest);

VisitorCancelOrder

Purpose is for a visitor to cancel an existing order if the option is present on the web shop and if business
logic does not prevent it. For example, order has already been fulfilled and/or shipped.

Typically triggered when showing order details to the customer launched from the order history view and
the customer chooses to cancel the order

Name: VisitorCancelOrder

Description: Is used to cancel an order placed by the visitor. The decision on whether the order
is cancelled or not lies in business logic in the external commerce system. Typically
an order cannot be cancelled once its shop owner has started fulfilling/processing it.
If the order cannot be cancelled, it must be reflected in the returned
SystemMessages

Usage: Called from Sitecore
Signature: VisitorCancelOrderResult VisitorCancelOrder(VisitorCancelOrderRequest

request)

Input:
 ShopName – Mandatory

The name of the shop
 OrderId – Mandatory

The ID of the order
 CustomerID – Mandatory

The ID of the customer / visitor
If the customer ID is not provided there is a potential security risk, that any visitor
can access orders from all customers

Output:
 SystemMessages - Collection of messages from the external system.

Usage Example:

var orderService = new OrderServiceProvider();

// need a valid order id for the first param

var visitorCancelOrder = new VisitorCancelOrderRequest("Order_7777", "Me", "MyShop");

var result = orderService.VisitorCancelOrder(visitorCancelOrder);

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 66 of 150

2.3.3 Order Pipelines

SubmitVisitorOrder

Name: VisitorSubmitOrder

Description: This pipeline is responsible for creating an order. The orders are managed by the
commerce system.

Usage: Called from Sitecore.
Args:

 Request - Contains cart with the Shop name, cart, customer ID and customer party
IDs for buyer (shipping) and accounting (Invoice).

 Response - Contains the order object.
Processors: CreateOrder – Creates an order in the external commerce system based on the

given parameters
Note: If an error occurs during processing of the cart, the Success property of the
SubmitVisitorOrderResult is set to false

 TriggerOrderGoal– the goal “Visitor Order Created” is triggered with values
ShopName, Customer ID, Order Id and total order amount.
The engagement value must be set to the amount of the order total!!
Note: If the Success property of the SubmitVisitorOrderResult is false no goal is
triggered

 AddOrderToEAPlan– Adds visitor to EA plan. For example, “New Order Placed”,
which sends the order confirmation and follows-up on purchase, customer
satisfaction and new offers
Note: If the Success property of the SubmitVisitorOrderResult is false no goal is
triggered

GetVisitorOrders

Name: GetVisitorOrders

Description: Gets a list of orders for the specified customer
Usage: Called from Sitecore.

Args:
 Request – ShopName and CustomerID
 Response – A list of OrderBase objects

Processors:
 GetVisitorOrdersFromECS–

Responsibility:

Get the list of orders for the specified customer from the ECS. It must be possible to

have the ECS and Sitecore installed in different locations, so it must be possible to

access remotely.

Usage: The processor is mandatory

Ownership: The processor is provided with the ECS connector integrating with
Connect

Customization: The processor must always have an implementation that works with
the ECS

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 67 of 150

 TriggerPageEvent –

Responsibility: Trigger the Connect specific page event Visitor Viewed Order

History along with information about the ShopName and Customer ID

Usage: Mandatory.

Ownership: The processor is provided with Connect

Customization: Not needed, but can be overwritten if other values from the order
should be registered with the page event

GetVisitorOrder

Name: GetVisitorOrder

Description: Gets the order by Id placed by the visitor. Executed from method "GetVisitorOrder"
Usage: Called from Sitecore.

Args:
 Request – ShopName and Order ID
 Response – An instance of an order

Processors:
 GetVisitorOrdersFromECS–

Responsibility: Get the order details for the specified order ID from the ECS.

Usage: The processor is mandatory

Ownership: The processor is provided with the ECS connector integrating with
Connect

Customization: The processor must always have an implementation that works with
the ECS

 TriggerPageEvent –

Responsibility: Trigger the Connect specific page event Visitor Viewed Order

Details along with information about the ShopName, Order ID and total order

amount

Usage: Mandatory.

Ownership: The processor is provided with Connect

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 68 of 150

Customization: Overwrite the processor if other values from the order should be
registered

VisitorCancelOrder

Name: VisitorCancelOrder

Description: Ca Called when a visitor order is being cancelled
Usage: Called from Sitecore.

Args:

 Request – OrderId, CustomerId and ShopName
 Response – an instance of the order

Processors:
 VisitorCancelOrderFromECS–

Responsibility: Get the order details for the specified order ID from the ECS.

Usage: The processor is mandatory

Ownership: The processor is provided with the ECS connector integrating with
Connect

Customization: The processor must always have an implementation that works with
the ECS

 TriggerPageEvent –

Responsibility: Trigger the Connect specific page event Visitor Cancelled Order

Details along with information about the ShopName, Order ID and total order

amount

Usage: Mandatory.

Ownership: The processor is provided with Connect

Customization: Overwrite the processor if other values from the order should be
registered

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 69 of 150

2.4 Inventory

2.4.1 The Inventory Domain Model

Note: The domain model consists of classes that make up the contracts with the external system. The
contracts are defined as classes instead of interfaces to allow the model to be easily extended later if
needed. This follow the best practice guidelines defined in the book Framework Design Guidelines.

Default implementation of the contracts are delivered as part of Connect. If an actual Connect provider
with an external commerce system contains more functionality that provided by default, the
implementation can be replaced. All instantiation of actual classes will be handled through dependency
injection.

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 70 of 150

Class: StockInformation

StockInformation is used as a strongly typed composite return value for service method
GetStockInformation.

Name Type Description

Product InventoryProduct Identifier for the product or product variant
in the commerce system

Status StockStatus Default possible values are: In-Stock, Out-
Of-Stock, Pre-Orderable, Back-Orderable

Count Double In case of products being bundled in
quantities there might be fractional
numbers

AvailabilityDate DateTime In Case the product is out-of-stock or pre-
orderable, an availability date can be
present

Class: OrderableInformation

OrderableInformation is used as a strongly typed composite return value for service methods
GetPreOrdableInformation and GetBackOrderableInformation.

Name Type Description

Product InventoryProduct Identifier for the product or product variant
in the commerce system

Status StockStatus Default possible values are: In-Stock, Out-
Of-Stock, Pre-Orderable, Back-Orderable

InStockDate Datetime An ETA date for when the product is back
in stock

ShippingDate DateTime An ETA date for when the product is
shippable

CartQuantityLimit Double A limit for the visitor to add to his or her
cart

OrderableStartDate DateTime A date and time for when the first orders
can be placed for the given product

OrderableEndDate DateTime A date and time for when the last orders
can be placed for the given product

RemainingQuantity Double In case of a pre-orderable product then
there might be a remaining quantity to be
placed as orders

Class: IndexStockInformation

IndexStockInformation is used as a strongly typed composite value used in pipeline
StockStatusForIndexing when indexing products and including basic stock information.

The entity inherits from the base entity StockLocations. In the table, the inherited properties are marked in
Italics

Name Type Description

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 71 of 150

Product InventoryProduct Identifier for the product or product variant
in the commerce system

InStockLocations List<string> A list of locations where the product is in
stock

OutOfStockLocations List<string> A list of locations where the product is out
of stock

OrderableLocations List<string> A list of locations where the product can
be ordered from

PreOrderable Boolean Indicates if the product is pre-orderable or
not

Class: StockInformationUpdate

StockInformationUpdate is used as a strongly typed composite return value from method
GetBackInStockInformation to indicate the product and the locations where it will be back in stock
optionally along with availability date and count.

Name Type Description

Product ID String Id of the product
StockInformationUpdateLocation List<

StockInformationUpdateLocation
>

A list of locations where the
product will become available
along with the count and
availability date as optional
values

Class: StockInformationUpdateLocation

StockInformationUpdateLocation is used as a strongly typed value nested only into
StockInformationUpdate returned from method GetBackInStockInformation to indicate the locations
where the product will be back in stock optionally along with availability date and count.

Name Type Description

Location String Name of the location
AvailabilityDate DateTime? An optional date and time indicating when the product

will be in stock. It can be used in comparison with the
optional interest date that the visitor provided. If the
interest date is before the availability date, then the
notification signup becomes irrelevant and it can be
acted upon

Count Double? An optional count of products that are in stock at the
location at the specified date and time

Class: StockDetailsLevel

It is anticipated that there is a performance related difference between obtaining a simple stock status
and getting the actual stock count. In order to allow for flexibility it is possible to specify the level of details
that are requested.

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 72 of 150

Class StockDetailsLevel is used as a strongly typed request parameter for service method
GetStockInformation to indicate the level of stock details that is requested. Using a strongly typed
parameter will ease the use of the API for solution developers. The following example illustrates the use
of the class as an enum-like parameter.

StockInformation stockInformation = GetStockInformation(

 new StockInformationRequest { shopName = “MyShop”;

 products = new list<string> { “Aw123x” };

 detailsLevel = StockDetailsLevel.Status

 }).Result;

The following table contains the list of default StockDetailsLevel options. Below is an example of how the
list of options can be extended.

Name Type Description

Status public const int Status = 1 Indicates that the minimum information is
to be returned, which is stock status

StatusAndAvailability public const int
StatusAndAvailability = 2

Indicates that the status and availability
date information is to be returned.
Availability date is relevant in case status
is equal to

Count public const int Count = 3
All public const int All = 4

The class is introduced as an extensible enum. In order to extend and customize the StockDetailsLevel
options:

public class MyECSStockDetailsLevel : StockDetailsLevel
{
 public const int MyCustomDetailLevel = 4;
 public MyECSStockDetailsLevel (int value) : base(value)
 { }
}

Class: StockStatus

Class StockStatus is used as a strongly typed value to indicate stock status. Using a strongly typed value
will ease the use of the API for solution developers. The following example illustrates the use of the class
as an enum-like parameter.

StockInformation stockInformation = GetStockInformation(

 new StockInformationRequest { shopName = “MyShop”;

 products = new list<string> { “Aw123x” };

 detailsLevel = StockDetailsLevel.Status

 }).Result.StockInformation[0];

If (stockInformation.Status == StockStatus.PreOrderable)

{

 // Do work

}

The following table contains the list of default StockStatus options. Below is an example of how the list of
options can be extended.

Name Type Description

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 73 of 150

InStock public const int InStock =
1

Indicates that the requested product is in
stock

OutOfStock public const int
OutOfStock = 2

Indicates that the requested product is out
of stock

PreOrderable public const int
PreOrderable = 3

Indicates that the requested product is not
in stock yet, but is pre-orderable

BackOrderable public const int
BackOrderable = 4

Indicates that the requested product is out
of stock, but is back-orderable

The class is introduced as an extensible enum. In order to extend and customize the StockDetailsLevel
options:

public class MyECSStockStatus : StockStatus
{
 public const int MyCustomStatus = 4;
 public MyECSStockStatus (int value) : base(value)
 { }
}

Class: InventoryProduct

Class InventoryProduct is used as a strongly typed value to identify a product. Using a strongly typed
value will ease the use of the API for solution developers.

Name Type Description

ProductId string Unique identifier for the product or product
variant in the commerce system

Class: StockLocations

StockLocations is used as a strongly typed composite value used in pipeline GetProductStockLocations
when retrieving locations for a particular product.

StockLocations is also used as the base entity.

Name Type Description

InStockLocations List<string> A list of locations where the product is
InStock

OutOfStockLocations List<string> A list of locations where the product is out
of stock

OrderableLocations List<string> A list of locations where the product can
be ordered from

2.4.2 Inventory Service Methods

Service providers are wrapper objects designed to make it easier to interact with Connect pipelines. The
providers implement no logic other than calling Connect pipelines. All of the business logic is
implemented in the pipeline processors.

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 74 of 150

The Inventory Service Provider contains the following methods for interacting with inventory data.

GetStockInformation

Name: GetStockInformation

Description: Retrieves different levels of stock information from the ECS

Calls the pipeline "GetStockInformation".

Usage: Called from Sitecore when stock information is needed for a list of specified
products

Signature: GetStockInformationResult

GetStockInformation(GetStockInformationRequest request)

Input:
 ShopName – string. Mandatory

The name of the shop
 Products – list<InventoryProduct>. Mandatory

A list of InventoryProduct. Whether it is products or product variants is up to the
implementation with the ECS

 DetailsLevel – StockDetailsLevel. Mandatory
Class StockDetailsLevel is used as a strongly typed request parameter for service
method GetStockInformation to indicate the level of stock details that is requested

 Location – string. Optional
The specific warehouse or central storage where the stock information is
Default is Central storage

 Customer ID – string. Optional
The ID of the customer in case the stock information is dependent on the actual
customer

Output:
 List<StockInformation> StockInformation – A list of StockInformation objects
 SystemMessages - Collection of messages from the external system.

Usage Example:

var inventoryService = new InventoryServiceProvider();

var request = new GetStockInformationRequest("shopname", new List<InventoryProduct>

 {

 new InventoryProduct

 {

 ProductId = "product_1"

 },

 new InventoryProduct

 {

 ProductId = "product_2"

 },

 new InventoryProduct

 { ProductId = "product_3" }

 },

 StockDetailsLevel.StatusAndAvailability);

var result = inventoryService.GetStockInformation(request);

GetPreOrderableInformation

Name: GetPreOrderableInformation

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 75 of 150

Description: Retrieves the pre-orderable information
Usage: Called from Sitecore

Signature: Result [Name](Request request)

Input:
 ShopName – String. Mandatory

The name of the shop
 Products - List< InventoryProduct >. Mandatory

The list of InventoryProduct
 Visitor ID – string. Optional

The ID of the visitor / contact or customer
Output:

 OrderableInformation – List<OrderableInformation>
A list of strongly typed objects each with the information for a specific product

 SystemMessages - Collection of messages from the external system.

Usage Example:

var inventoryService = new InventoryServiceProvider();

var request = new GetPreOrderableInformationRequest("shopname",

 new List<InventoryProduct>

 {

 new InventoryProduct

 {

 ProductId = "product_1"

 },

 new InventoryProduct

 {

 ProductId = "product_2"

 },

 new InventoryProduct

 { ProductId = "product_3" }

 });

var result = inventoryService.GetPreOrderableInformation(request);

GetBackOrderableInformation

Name: [Name]

Description: Gets the back-orderable information
Usage: Called from Sitecore

Signature: Result [Name](Request request)

Input:
 ShopName – String. Mandatory

The name of the shop
 Products - List< InventoryProduct >. Mandatory

The list of InventoryProduct
 Visitor ID – string. Optional

The ID of the visitor / contact or customer
Output:

 OrderableInformation – List<OrderableInformation>
A list of strongly typed objects each with the information for a specific product

 SystemMessages - Collection of messages from the external system.

Usage Example:

var inventoryService = new InventoryServiceProvider();

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 76 of 150

var request = new GetBackOrderableInformationRequest("shopname",

 new List<InventoryProduct>

 {

 new InventoryProduct

 {

 ProductId = "product_1"

 },

 new InventoryProduct

 {

 ProductId = "product_2"

 },

 new InventoryProduct

 { ProductId = "product_3" }

 });

var result = inventoryService.GetBackOrderableInformation(request);

VisitedProductStockStatus

Name: VisitedProductStockStatus

Description: Should be called in the event of the customer pays a visit to a product details page
which shows

Usage: Called from Sitecore
Signature: VisitedProductStockStatusResult VisitedProductStockStatus

(VisitedProductStockStatusRequest request)

Input:
 ShopName – string. Mandatory

The name of the shop
 StockInformation - StockInformation. Mandatory

The stock information previously retrieved by calling GetStockInformation
 Location – string. Optional

The specific warehouse or central storage where the stock information is
Default is Central storage

Output:
 SystemMessages - Collection of messages from the external system.

Usage Example:

var inventoryService = new InventoryServiceProvider();

var stockInfo = new StockInformation

{

 Product = new InventoryProduct

 {

 ProductId = "product_1"

 },

 Status = StockStatus.BackOrderable

};

var request = new VisitedProductStockStatusRequest("shopname", stockInfo);

var result = inventoryService.VisitedProductStockStatus(request);

ProductsAreBackInStock

Name: ProductsAreBackInStock

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 77 of 150

Description: A method that is exposed so that it can be called remotely to signal when products
are back in stock. Executes the corresponding pipeline ProductsAreBackInStock

Usage: Called from ECS
Signature: ProductsAreBackInStockResult

ProductsAreBackInStock(ProductsAreBackInStockRequest request)

Input:
 Shop Name – string. Mandatory

The name of the shop for which this relates

 Products – list< InventoryProduct>. Mandatory
A list of InventoryProduct that signals which products have updated stock
information

Output:
 SystemMessages - Collection of messages from the external system.

Usage Example:

var inventoryService = new InventoryServiceProvider();

var request = new ProductsAreBackInStockRequest("shopname",

 new List<InventoryProduct>

 {

 new InventoryProduct

 {

 ProductId = "product_1"

 },

 new InventoryProduct

 {

 ProductId = "product_2"

 },

 new InventoryProduct

 { ProductId = "product_3" }

 });

var result = inventoryService.ProductsAreBackInStock(request);

VisitorSignUpForStockNotification

Name: VisitorSignUpForStockNotification

Description: Is used to add visitor to EA plan so they can be notified when the product gets
back in stock

Usage: Called from Sitecore
Signature: VisitorSignUpForStockNotificationResult

VisitorSignUpForStockNotification(VisitorSignUpForStockNotifi

cationRequest request)

Input:
 ShopName – string. Mandatory
 Visitor ID – string. Mandatory

The ID of the current visitor / contact
 Email – string. Mandatory

E-mail address to send the notification to
 Product – InventoryProduct. Mandatory
 Location – string. Optional
 InterestDate – DateTime. Optional

A date and time that signals the deadline for which to notify the visitor
Default is 6 months from now

Output:

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 78 of 150

 SystemMessages - Collection of messages from the external system.

Usage Example:

var inventoryService = new InventoryServiceProvider();

var request = new VisitorSignUpForStockNotificationRequest("shopname",

 "visitorId",

 "email",

 new InventoryProduct { ProductId = "product_1" });

var result = inventoryService.VisitorSignUpForStockNotification(request);

RemoveVisitorFromStockNotification

Name: RemoveVisitorFromStockNotification

Description: Typically called from Sitecore, when the visitor has decided to unsubscribe from the stock
notification and hence the EA plan

Usage: Called from Sitecore
Signature: RemoveVisitorFromStockNotificationResult

RemoveVisitorFromStockNotification(RemoveVisitorFromStockNotificat

ionRequest request)

Input:
 ShopName – string. Mandatory
 Visitor ID – string. Mandatory

The ID of the current visitor / contact
 Product ID – string. Mandatory

Output:
 SystemMessages - Collection of messages from the external system.

Usage Example:

var inventoryService = new InventoryServiceProvider();

var request = new RemoveVisitorFromStockNotificationRequest("shopname",

 "visitorId",

 new InventoryProduct { ProductId = "product_1" });

var result = inventoryService.RemoveVisitorFromStockNotification(request);

GetBackInStockInformation

Name: GetBackInStockInformation

Description: The method is used to get the updated stock information from the ECS
The method is normally called because of method ProductsAreBackInStock has
been called remotely and in that case the pipeline is implicitly called
The difference between GetStockInformation and GetBackInStockInformation is
that the first queries for stock information in a specified location and for a given
customer, where the latter gets the stock information for all locations ignoring
customer context

Usage: Called from Sitecore
Signature: GetBackInStockInformationResult GetBackInStockInformation

(GetBackInStockInformationRequest request)

Input:
 Shop Name – string. Mandatory

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 79 of 150

The name of the shop for which this relates
 Products – list< InventoryProduct >. Optional

A list of InventoryProduct to get updated stock information from.
If the list is empty, for example no list is provided, it is up to the ECS to return stock
information updates for the products that have been updated.

Output:
 StockInformationUpdates – list<StockInformationUpdate>. Mandatory

A list of StockInformationUpdate object that each signals the product and a list of
locations for which the product is back in stock, when (availability date) and the
count, where the latter two are optional values.

 SystemMessages - Collection of messages from the external system.

Usage Example:

var inventoryService = new InventoryServiceProvider();

var request = new GetBackInStockInformationRequest("shopname")

{

 Products = new List<InventoryProduct>

 {

 new InventoryProduct

 {

 ProductId = "product_1"

 },

 new InventoryProduct

 {

 ProductId = "product_2"

 },

 new InventoryProduct

 {

 ProductId = "product_3"

 }

 }

};

var result = inventoryService.GetBackInStockInformation(request);

2.4.3 Inventory Pipelines

GetStockInformation

Name: GetStockInformation

Description: This pipeline is responsible for retrieving stock information for one or more products
specified

Usage: Called from Sitecore.

Args:

 Request - Contains the list of InventoryProduct, details level, shop name, location
and customer ID. Is set prior to calling the pipeline.

 Response - Contains the user object. Is read after the pipeline is called.

Processors:

 GetStockInformation –

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 80 of 150

Responsibility: To retrieve stock information for the list of specified product IDs

Usage: Calls the ECS to get the stock information

Ownership: The processor is provided by the ECS

Customization: Must be created as part of the connector integrating with the ECS

StockStatusForIndexing

Developer story:

 As a developer I have a StockStatusForIndexing pipeline that runs when the crawler is indexing
products and that returns the information to be indexed.

Acceptance criteria

- Check pipeline StockStatusForIndexing has no service layer method associated

- Check pipeline is separate from the pipeline associated with GetProductStockInformation

- Check the output retrieves in-stock or our-of-stock information associated with each
location

- Check the output includes which location the product is sold

Notes

- User story is 405718

 As a developer I get stock status information included in the product index so when I query the
index I can include criteria regarding stock status in connection with location

Acceptance criteria

o Check that we have a InStock index field that lists all the locations where the
product is in stock

o Check that we have a OutOfStock index field that lists all the locations where the
product is out of stock

o Check that we have a Location index field that contains the locations where the
product is orderable from

o Check that we have a Pre-Orderable index field (Boolean) that indicates whether
the product is pre-orderable or not

Notes

o The index contains only stock status information per product and not per variant

o The table below shows an example of the product index content for a T-shirt
product that comes in different variants and with the In-Stock and Out-of-Stock
columns

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 81 of 150

Product ID (not
variant)

Size Color In-Stock Out-Of-Stock Location Pre-
orderable

Aw123-04 S, M, L, XL R, B, G, O Central Store,
Store1, Store2

Store3 Central
Store 1,
Store 2,
Store 3

Yes

Name: StockStatusForIndexing

Description: Called during indexing to populate the index with stock information

Usage: Called from Sitecore.

Args:

 Request – A list of Product IDs is provided from the Sitecore indexing

 Response – A list of IndexStockInformation objects is returned for processing and
inclusion into the index

Processors:

 StockStatusForIndexing –

Responsibility: To call the ECS and retrieve stock information used to populate the
product index

Usage: Called when crawling product repository and indexing the products.

Ownership: Custom processor provided with the connector to the ECS

Customization:

GetPreOrderableInformation

Name: GetPreOrderableInformation

Description: Contacts the ECS to get the pre-orderable information

Usage: Called from Sitecore

Args:

 Request – ShopName, list of InventoryProduct, Visitor ID, Location

 Response – A list of OrderableInformation

Processors:

 GetPreOrderableInformation –

Responsibility: Contacts the ECS to get the pre-orderable information

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 82 of 150

Usage: Called from Sitecore to retrieve information to be used for rendering to the
visitor as well as restricting placing orders

Ownership: Provided with the ECS connector

Customization: Must be customized

GetBackOrderableInformation

Name: GetBackOrderableInformation

Description: Contacts the ECS to get the back-orderable information

Usage: Called from Sitecore

Args:

 Request – ShopName, list of InventoryProduct, Visitor ID, Location

 Response – A list of OrderableInformation

Processors:

 GetBackOrderableInformation –

Responsibility: Contacts the ECS to get the back-orderable information

Usage: Called from Sitecore to retrieve information to be used for rendering to the
visitor as well as restricting placing orders

Ownership: Provided with the ECS connector

Customization: Must be customized

VisitorAppliedFacet

Name: VisitorAppliedFacet

Description: This pipeline is responsible for triggering page event FacetedBy

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 83 of 150

Usage: Called from Sitecore.

Args:

 Request - Contains the additional pageevent event information

 Response - None

Processors:

 TriggerPageEvent –

Responsibility: To trigger page event “FacetedBy” to register the facet used by the
visitor

Usage: Called from Sitecore and typically doesn’t call the ECS at all

Ownership: The processor is provided with Connect

Customization: No immediate need for overwriting the default functionality, unless
more information should be registered with the page event

VisitorAppliedSortOrder

Name: VisitorAppliedSortOrder

Description: This pipeline is responsible for triggering page event SortedBy

Usage: Called from Sitecore.

Args:

 Request - Contains the additional pageevent event information

 Response – None

Processors:

 TriggerPageEvent –

Responsibility: To trigger page event “SortedBy” to register the columns and
directions that has been chosen by the user

Usage: Called from Sitecore and typically doesn’t call the ECS at all

Ownership: The processor is provided with Connect

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 84 of 150

Customization: No immediate need for overwriting the default functionality, unless
more information should be registered with the page event

ProductsAreBackInStock

Name: ProductsAreBackInStock

Description: Triggers the page event Products Back In Stock, so that the visitors which have
signed up, can be notified

Usage: Called from Sitecore.

Args:

 Request – Shop name and a list of InventoryProduct for which the product is back
in stock

 Response – None

Processors:

 TriggerPageEvent–

Responsibility: Trigger page event Products Back In Stock along with the shop
name and a list of product IDs. Firing the event will trigger the EA plan to re-
evaluate the visitors and determine whether they should be notified

Usage: Called from the ECS to signal when products have come back in stock

Ownership: Provided with Connect

Customization: No immediate need

GetBackInStockInformation

Name: GetBackInStockInformation

Description: The method and pipeline is used to get the updated stock information from the ECS

The method is normally called because of method ProductsAreBackInStock has
been called remotely and in that case the pipeline is implicitly called

The difference between GetStockInformation and GetBackInStockInformation is
that the first queries for stock information in a specified location and for a given
customer, where the latter gets the stock information for all locations ignoring
customer context

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 85 of 150

Usage: Called from Sitecore.

Args:

 Request – Shop name and optionally a list of InventoryProduct.

 Response – A list of StockInformationUpdate objects

Processors:

 GetStockInformationUpdates–

Responsibility: To retrieve a list of StockInformation Updates objects from the ECS,
each describing the product and a list of locations for which the product is back in
stock, when (availability date) and the count, where the latter two are optional
values

The parameters can optionally include a list of product IDs specifying the products
for which a stock update is requested.

If the list is empty then it is up to the ECS to keep track of which products that new
stock updates. It’s needed in case the ECS is not able to notify Connect of stock
update changes. In That case Connect should be able to query for any updates in
order for the EA plan to work

Usage: Called from the Sitecore to get the information needed to follow-up in the
EA plan

Ownership: Provided with Connect

Customization: No immediate need

VisitorSignUpForStockNotification

Name: VisitorSignUpForStockNotification

Description: Called from Sitecore when a visitor wants to be notified when a product gets back in
stock

Usage: Called from Sitecore.

Args:

 Request – ShopName, Visitor ID, InventoryProduct and interest Date

 Response – None

Processors:

 VisitorSignUpForStockNotification –

Responsibility:

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 86 of 150

- Check visitors, who are not already in the EA plan Back In Stock
Notification, are added

- Check Product ID and interest date are stored in the EA state

- Check visitors who are already in the plan stays in the same state, but
has an additional product ID and interest date added to the list

Usage:

Ownership: Provided with Connect

Customization: No immediate need

 TriggerPageEvent

Responsibility:

- Check that page event Back In Stock Subscription is triggered which
includes the product ID, e-mail address and interest date

Usage:

Ownership: Provided with Connect

Customization: No immediate need

RemoveVisitorFromStockNotification

Name: RemoveVisitorFromStockNotification

Description: Typically called from Sitecore, when the visitor has decided to unsubscribe from the
stock notification and hence the EA plan

Removes the visitor from the EA plan and triggers a page event

Usage: Executed from Sitecore, when the method with the same name is called

Args:

 Request – ShopName, VisitorID and ProductID

 Response – None

Processors:

 RemoveVisitorFromStockNotification –

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 87 of 150

Responsibility:

- Check visitor ID and product ID are provided

- Check that the product ID and interest date is removed from the visitors
list and saved to EA state

- Check that if the visitors list of product IDs is empty, then the visitor is
removed from the plan all together

Usage:

Ownership: Provided with Connect

Customization: No immediate need for customization

 TriggerPageEvent –

Responsibility: Check that page event Back In Stock Unsubscription is triggered
which includes the product ID, e-mail address and interest date.

Usage:

Ownership: Provided with Connect

Customization: No immediate need for customization

OrderedProductStockStatus

Name: OrderedProductStockStatus

Description: Pipeline is called as a part of the SubmitOrder pipeline

Usage: Called implicitly from pipeline AddLinesToCart from the Cart service layer to trigger
a page event whenever a product which is our of stock is added to the cart

Args:

 Request – ShopName and Cart

 Response - None, except for external system messages

Processors:

 TriggerPageEvent–

Responsibility: For each order line, trigger a page event
ProductsOutOfStockOrdered along with the ShopName, Order ID, Product ID,
Stock Status, if and only if, the stock status is NOT InStock

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 88 of 150

Usage: Mandatory

Ownership: Provided with Connect

Customization: Not needed

AddToCartStockStatus

Name: AddToCartStockStatus

Description: Pipeline is called as a part of the AddLinesToCart pipeline

Usage: Called implicitly from pipeline AddLinesToCart from the Cart service layer to trigger
a page event whenever a product which is our of stock is added to the cart

Args:

 Request – ShopName, Customer ID (visitor ID), Cart ID and Cart-Lines

 Response – None, except for external system messages

Processors:

 TriggerPageEvent–

Responsibility: Trigger page event AddToCartStockStatus along with the
ShopName, Cart ID, Product ID , Stock Status, Pre-orderable, In-Stock Date,
Shipping Date, if and only if, the stock status is NOT InStock

Usage: Mandatory

Ownership: Provided with Connect

Customization: Not needed

VisitedProductStockStatus

Name: VisitedProductStockStatus

Description:

Usage: Called from Sitecore.

Args:

 Request – ShopName, Location and an instance of StockInformation

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 89 of 150

 Response – None except system messages

Processors:

 TriggerPageEvent–

Responsibility: Trigger page event VisitedProductStockStatus along with
ShopName and the information fund in the StockInformation entity, for example
Product ID, Stock Status, AvailabilityDate and count. Note that not all the stock
information fields might have values filled in.

Usage: Mandatory

Ownership: Provided with Connect

Customization: Not needed

CurrentProductID

Name: CurrentProductID

Description: The processor is implicitly used by rendering rule conditions that needs to know the
context of which product is the currently selected product

The pipeline is called from Connect.Context when resolving the property ProductId
which returns the current product ID

Usage: Called from Sitecore.

Args:

 Request -

 Response – The product ID of the current product ID

Processors:

 GetCurrentProductID–

Responsibility:

Establish the external ID of the currently selected product.

Depending on the solution, there are different ways to setup the current product

Default implementation will resolve the ID according to how the ECS is setup. That
means the URL indicates the product ID of the current product when viewing a
product details page. On all other pages, the value is undefined

Usage: Used from Rendering rule conditions

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 90 of 150

Ownership: ECS

Customization: Must be customized in every solution

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 91 of 150

2.5 Customer

2.5.1 The Customer Domain Model

Class: CommerceUser

The CommerceUser class is responsible for representing a user account. A user resembles a visitor of a
webshop (website) who has identified him- or herself explicitly by creating a login account by which the
person can be (re-)authorized.

The CommerceUser entity can be extended to include custom information particular to the external
commerce system, but the default implementation will work if users are stored in Sitecore only for
authentication purposes.

The following assertions relates to a user:

 A user represents a person who can log in to a website. For example, meaning that an account
exists for that user in the system.

 A visitor going through the checkout without registering a user account. For example, anonymous
checkout, will be created as a customer, but without a user account

 Customer and User relationship:
o A user can represent multiple different customers acting as an agent on the customers

behalf
o A customer, such as a company, can have multiple users representing the company. For

example, employees of different departments
o Based on the two previous statements it means that there is a many to many relationship

between the two.

 Multiple users can manage the same shopping cart on behalf of the same customer or have
individual shopping carts

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 92 of 150

Usage scenarios:

 When a new account is explicitly created on the site

 When an existing user account is used during checkout

 When the returning user authenticates him- or herself to get the customer specific product prices
and discounts

 When the user and/or customer profile is edited by the user

 When the shop owner sends out welcome mail to new users

 When the shop owner wants to follow-up on new users that hasn’t returned to the shop for some
time (B2C)

Name Type Description

ExternalID String Unique identifier for the user in the
commerce system. This can be used to
get a reference to the user using the
commerce system's native API.
Will be empty until account has been
created in external system

ID String Unique ID
Email String The users e-mail
FirstName String
LastName String
Shops List<String> The list of shops the user has access to.
Disabled Boolean Indicates if the user account is disabled or

not
Comment String Free text comment
CreationDate DateTime Gets the date and time when the account

was added.
LastActivityDate DateTime Gets or sets the date and time when the

user was last authenticated or accessed
the shop.

LastLoginDate DateTime Gets or sets the date and time when the
user was last authenticated.

LastDisabledDate DateTime Gets the most recent date and time when
the user account was disabled.

LastPasswordChangedDate DateTime Gets the date and time when the user's
password was last updated.

Customers List<string> The list of customer IDs of the customers
that the user is associated with

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 93 of 150

Class: CommerceCustomer

The concept of a customer is determined by the integrated commerce system and the e-shop solution. In
B2C solutions, the customer typically represents a person whereas in B2B scenarios a customer typically
represents a company.

The CommerceCustomer entity will always be extended to include custom information particular to the
external commerce system.

Definition

 A customer represents a person in a B2C shops and a company in a B2B shops.

 A customer account cannot be used to log in to the webshop. In order to log in, a user account is
needed. A Customer account is different from a user account and the two can carry different
information.

 Not all commerce systems support the concept of both a user and a customer. Example: SES
only has users whereas InSite Commerce has both customers and users.

o When the external system does not support customers, the information might be stored
together in the User profile, but the Relation will typically not be available.

 In B2C scenarios a customer and a user is typically the same

 In B2B scenarios a customer typically has 1-many users associated:
o A customer is typically the one paying the invoices for the orders placed in the system by

its users
o Users are the ones managing shopping carts on behalf of the customer and go through

the checkout process, placing the order.
o A customer can have multiple shopping carts associated and they can be managed by

one or many different users

Usage scenarios:

 When a new customer account is created implicitly during anonymous checkout

 When the customer profile is edited by the shop owner

 When the customer places an order and gets an order confirmation mail

 When the shop owner sends out welcome mail to new customers in B2B solutions

 When the shop owner wants to make a campaign or promote special offers in B2B solutions

 When the shop owner wants to follow-up on new customers that hasn’t placed orders in the shop
for some time

Name Type Description

ExternalID String Unique identifier for the user in the commerce
system. This can be used to get a reference to
the user using the commerce system's native
API.
If ASP.NET is used, then the ExternalUserId will
equal UserName
Will be empty until account has been created in
external system

Name String The name of the customer
ID String Unique ID
IsDisabled Boolean Indicates if the customer account is disabled or

not
Shops List<String> The list of shops the customer has access to

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 94 of 150

CustomerParties List<CustomerParty> The list of parties consisting of contact and
address information

CommerceUsers List<string> The list of user IDs of the users that the customer
is associated with

Class: CustomerParty

CustomerParty is used to represent the type and 0-to-many relationship between the customer and a list
of parties

Name Type Description

ExternalID String Unique identifier for the party
PartyId String ID of the party. Reserved for future use in

Sitecore
Name String An optional string for that describes the

relationship
Type CustomerPartyTypes Represent the type of relationship

Class: CustomerPartyTypes

Class CustomerPartyTypes is used to indicate the type of relationship between the customer and party.

The class is introduced as an extensible enum. In order to extend and customize the
CustomerPartyTypes options:

public class MyECSCustomerPartyTypes : CustomerPartyTypes
{
 public const int MyCustomPartyType = 3;
 public MyECSCustomerPartyTypes(int value) : base(value)
 { }
}

Name Type Description

BuyerParty public const int
BuyerParty = 1

BuyerParty represents the buyer and are
typically used as the party where products
are shipped to

AccountingParty public const int
AccountingParty = 2

AccountingParty represents the buyer and
are typically used as the party where the
invoice is sent to

Class: Party

The CustomerParty entity represents address contact information and a list of CustomerParty objects is
included in the Customer class

Note: The CustomerParty object is used in both the customer and order service layers.

Name Type Description

ExternalID String Unique identifier for the party
PartyID String ID of the party

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 95 of 150

FirstName String First name
LastName String Last name
Email String E-mail address
Company String Company name
Address1 String Streetname
Address2 String Region, District, County etc
ZipPostalCode String Zip/Postal code
City String City name
State String State
Country String Country name
PhoneNumber String Phone number

2.5.2 Customer Service Methods

Service providers are wrapper objects designed to make it easier to interact with Connect pipelines. The
providers implement no logic other than calling pipelines. All of the business logic is implemented in the
pipeline processors.

For each method there is a corresponding Request and Result object getting returned, ex. CreateUser
takes a CreateUserRequest object and returns a CreateUserResult object.

The Customer Service Provider contains the following methods for interacting with customer and user
data.

CreateUser

Name: CreateUser

Description: Creates a user account by which the user can re-authenticate him- or herself upon
return.
By default the account is disabled until it has be confirmed by visitor to be a valid
request and ActivateUserAccount has been called

Calls the pipeline "CreateUser".

Usage: Called from Sitecore when a visitor is registering for an account. It could be during
the checkout process or through plain signup.

Signature: CreateUserResult CreateUser(CreateUserRequest request)

Input:
 Username – string. Mandatory

The user name for the new user.
 Email – string. Mandatory

The e-mail address for the new user.
 Password – string. Mandatory

The password for the new user.
 Shops– Mandatory

An instance of the CommerceUser object is parsed in. Mandatory fields: Username,
Email, Shops.

Output:
 User – An instance of the user object is returned. The user object is updated by the

external commerce system by supplying the External ID value.
 SystemMessages - Collection of messages from the external system.

Usage Example:

var customerService = new CustomerServiceProvider();

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 96 of 150

var request = new CreateUserRequest("JohnSmith", "password", "john@abczyx.net",

"webstore");

var result = customerService.CreateUser(request);

UpdateUser

Name: UpdateUser

Description: Updates an existing user account. Calls the pipeline "UpdateUser"
Usage: Called from Sitecore when visitor wants to update the information stored on the

account.
Signature: UpdateUserResult UpdateUser(UpdateUserRequest request)

Input:
 CommerceUser – An instance of the modified CommerceUser object is passed in

Output:
 User – An instance of the user object is returned.
 SystemMessages - Collection of messages from the external system.

Usage Example:

var customerService = new CustomerServiceProvider();

// create a user

var request = new CreateUserRequest("JohnSmith", "password", "john@abczyx.net",

"webstore");

var user = customerService.CreateUser(request).CommerceUser;

user.FirstName = "John";

// update the user

var updateRequest = new UpdateUserRequest(user);

var result = customerService.UpdateUser(updateRequest);

DeleteUser

Name: DeleteUser

Description: Deletes a user account.

Calls the pipeline "DeleteUser".

Usage: Called from Sitecore when the shop owner wants to delete an account.
It’s a solution business decision whether the account is actually deleted or simply
disabled

Signature: DeleteUserResult DeleteUser(DeleteUserRequest request)

Input:
 CommerceUser – An instance of the CommerceUser object is parsed in

Output:
 SystemMessages - Collection of messages from the external system.

Usage Example:

var customerService = new CustomerServiceProvider();

// create a user

var request = new CreateUserRequest("JohnSmith", "password", "john@abczyx.net",

"webstore");

var user = customerService.CreateUser(request).CommerceUser;

// delete the user

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 97 of 150

var deleteRequest = new DeleteUserRequest(user);

var result = customerService.DeleteUser(deleteRequest);

DisableUser

Name: DisableUser

Description: Disables a user account. Calls the pipeline "DisableUser"

Usage: Called from Sitecore when the user account should be disabled
Signature: DisableUserResult DisableUser(DisableUserRequest request)

Input:
 CommerceUser – Mandatory

An instance of the user object is parsed in
 Comment – Optional

An optional string that can explain why the user account was disabled. Will be put in
the Page Event as explanation

Output:
 CommerceUser – The disabled CommerceUser entity
 SystemMessages - Collection of messages from the external system.

Usage Example:

var customerService = new CustomerServiceProvider();

// create a user

var request = new CreateUserRequest("JohnSmith", "password", "john@abczyx.net",

"webstore");

var user = customerService.CreateUser(request).CommerceUser;

// disable the user

var disableRequest = new DisableUserRequest(user);

var disableResult = customerService.DisableUser(disableRequest);

// enable the user

var enableRequest = new EnableUserRequest(user);

var enableResult = customerService.EnableUser(enableRequest);

EnableUser

Name: EnableUser

Description: Enables a user account. Calls the pipeline "EnableUser"

A user account can be disabled for different reasons and triggered by shop owner,
visitor or by system (EA plan).
When a user account is disabled it must be possible to enable it again, which is the
purpose of this method.

The method seems similar to ActivateUserAccount in the way that both enable the
account. The difference lies in the usage scenario and possible actions associated.
EnableUser is a generic method whereas UserAccountActivation is used in a
specific scenario when a new account is created and must be validated and then
activated. The two trigger different page events, where the event User Account
Activated triggers the EA plan User Account Registration to proceed.

Usage: Called from Sitecore when the user account should be enabled
Signature: EnableUserResult EnableUser(EnableUserRequest request)

Input:

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 98 of 150

 CommerceUser – Mandatory
An instance of the user object is parsed in

 Comment – Optional
An optional string that can explain why the user account was enabled. Will be put in
the Page Event as explanation

Output:
 CommerceUser – The enabled CommerceUser entity
 SystemMessages - Collection of messages from the external system.

Usage Example:

var customerService = new CustomerServiceProvider();

// create a user

var request = new CreateUserRequest("JohnSmith", "password", "john@abczyx.net",

"webstore");

var user = customerService.CreateUser(request).CommerceUser;

// disable the user

var disableRequest = new DisableUserRequest(user);

var disableResult = customerService.DisableUser(disableRequest);

// enable the user

var enableRequest = new EnableUserRequest(user);

var enableResult = customerService.EnableUser(enableRequest);

GetUser

Name: GetUser

Description: Returns a single user account. Calls the pipeline "GetUser".

Usage: Called from Sitecore when searching for one or more accounts

Signature: GetUserResult GetUser(GetUserRequest request)

Input:
 ShopName – Mandatory
 UserName – Mandatory

The ID of the user to retrieve
Output:

 User – A single instance of a User
 SystemMessages - Collection of messages from the external system.

Usage Example:

var customerService = new CustomerServiceProvider();

// create a user

var request = new CreateUserRequest("JohnSmith", "password", "john@abczyx.net",

"webstore");

var user = customerService.CreateUser(request).CommerceUser;

var getRequest = new GetUserRequest("JohnSmith");

var result = customerService.GetUser(getRequest);

GetUsers

Name: GetUsers

Description: Queries and returns user accounts. Calls the pipeline "GetUsers".

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 99 of 150

Different input parameters can be provided and they will be combined using logical
and

Usage: Called from Sitecore when searching for one or more accounts
Signature: GetUsersResult GetUsers(GetUsersRequest request)

Input:
 ExternalIDs – Optional.

Can be a single or a list of IDs. When provided, it takes precedence
 SitecoreIDs – Optional

Can be a single or a list of IDs
 UserName – optional
 Email – optional
 ExternalCustomerIDs – optional

Can be a single or a list of IDs. Used when looking for users associated with a given
customer

 Disabled - optional
 ShopName – optional

Output:
 List<User>
 SystemMessages - Collection of messages from the external system.

Usage Example:

var customerService = new CustomerServiceProvider();

// create some users

var request = new CreateUserRequest("JohnSmith", "password", "john@abczyx.net",

"webstore");

var result = customerService.CreateUser(request);

request = new CreateUserRequest("JaneSmith", "passWord", "jane@jane.net", "webstore");

result = customerService.CreateUser(request);

request = new CreateUserRequest("Rob", "abcdefghij", "r@r.com", "webstore");

result = customerService.CreateUser(request);

var getRequest = new GetUsersRequest(new UserSearchCriteria { ShopName = "webstore" });

var getResult = customerService.GetUsers(getRequest);

Sitecore.Diagnostics.Assert.AreEqual(3, getResult.CommerceUsers.Count, "should have a

count of 3");

getRequest = new GetUsersRequest(new UserSearchCriteria { UserName = "JohnSmith" });

getResult = customerService.GetUsers(getRequest);

Sitecore.Diagnostics.Assert.AreEqual(1, getResult.CommerceUsers.Count, "should have a

count of 1");

CreateCustomer

Name: CreateCustomer

Description: Creates a customer. Calls the pipeline "CreateCustomer"

Usage: Typically called when a visitor is going through the checkout process
Signature: CreateCustomerResult CreateCustomer(CreateCustomerRequest

request)

Input:
 CommerceCustomer – Mandatory

An instance of the CommerceCustomer object is parsed in
Mandatory field values are: Name and Shops

Output:
 CommerceCustomer – An instance of the customer object is returned. The

customer object is updated by the external commerce system by supplying the
External ID.

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 100 of 150

 SystemMessages - Collection of messages from the external system.

Usage Example:

var customerService = new CustomerServiceProvider();

customerService.CreateCustomer(new CreateCustomerRequest(

 new CommerceCustomer

 {

 Name = "Jeff",

 Shops = new[] { "autohaus" },

 IsDisabled = true,

 ExternalId = "Jeff",

 Users = new[] { "Jeff" }

 }));

customerService.CreateCustomer(new CreateCustomerRequest(

 new CommerceCustomer

 {

 Name = "Bob",

 Shops = new[] { "webstore" },

 IsDisabled = false,

 ExternalId = "Jeff",

 Users = new[] { "Bob" }

 }));

UpdateCustomer

Name: UpdateCustomer

Description: Updates an existing customer account. Calls the pipeline "UpdateCustomer"

Usage: Called from Sitecore when visitor or shop owner wants to update the information
stored on the customer account.

Signature: UpdateCustomerResult UpdateCustomer(UpdateCustomerRequest

request)

Input:
 CommerceCustomer – An instance of the modified CommerceCustomer object is

parsed in
Output:

 CommerceCustomer – An instance of the customer object is returned.
 SystemMessages - Collection of messages from the external system.

Usage Example:

var customerService = new CustomerServiceProvider();

customerService.CreateCustomer(new CreateCustomerRequest(

 new CommerceCustomer

 {

 Name = "Jeff",

 Shops = new[] { "autohaus" },

 IsDisabled = true,

 ExternalId = "Jeff",

 Users = new[] { "Jeff" }

 }));

var customer = customerService.CreateCustomer(new CreateCustomerRequest(

 new CommerceCustomer

 {

 Name = "Bob",

 Shops = new[] { "webstore" },

 IsDisabled = false,

 ExternalId = "Jeff",

 Users = new[] { "Bob" }

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 101 of 150

 })).CommerceCustomer;

customer.IsDisabled = true;

customer.Name = "Bobby";

var request = new UpdateCustomerRequest(customer);

var result = customerService.UpdateCustomer(request);

DisableCustomer

Name: DisableCustomer

Description: Disables a customer account. Calls the pipeline "DisableCustomer"
Usage: Called from Sitecore when the customer account should be disabled

Signature: DisableCustomerResult DisableCustomer(DisableCustomerRequest

request)

Input:
 CommerceCustomer – Mandatory

An instance of the customer object is parsed in
 Comment – Optional

An optional string that can explain why the user account was disabled. Will be put in
the Page Event as explanation

Output:

 CommerceCustomer – The disabled customer
 SystemMessages - Collection of messages from the external system.

Usage Example:

var customerService = new CustomerServiceProvider();

var customer = customerService.CreateCustomer(new CreateCustomerRequest(

 new CommerceCustomer

 {

 Name = "Bob",

 Shops = new[] { "webstore" },

 IsDisabled = false,

 ExternalId = "Jeff",

 Users = new[] { "Bob" }

 })).CommerceCustomer;

var disableRequest = new DisableCustomerRequest(customer);

var disableResult = customerService.DisableCustomer(disableRequest);

var enableRequest = new EnableCustomerRequest(customer);

var enableResult = customerService.EnableCustomer(enableRequest);

EnableCustomer

Name: EnableCustomer

Description: Enables a customer account. Calls the pipeline "EnableCustomer"
Usage: Called from Sitecore when the customer account should be enabled

Signature: EnableCustomerResult EnableCustomer(EnableCustomerRequest

request)

Input:
 CommerceCustomer – Mandatory

An instance of the customer object is parsed in
 Comment – Optional

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 102 of 150

An optional string that can explain why the user account was enabled. Will be put in
the Page Event as explanation

Output:

 SystemMessages - Collection of messages from the external system.

Usage Example:

var customerService = new CustomerServiceProvider();

var customer = customerService.CreateCustomer(new CreateCustomerRequest(

 new CommerceCustomer

 {

 Name = "Bob",

 Shops = new[] { "webstore" },

 IsDisabled = false,

 ExternalId = "Jeff",

 Users = new[] { "Bob" }

 })).CommerceCustomer;

var disableRequest = new DisableCustomerRequest(customer);

var disableResult = customerService.DisableCustomer(disableRequest);

var enableRequest = new EnableCustomerRequest(customer);

var enableResult = customerService.EnableCustomer(enableRequest);

DeleteCustomer

Name: DeleteCustomer

Description: Deletes a customer account.

Calls the pipeline "DeleteUser".

Usage: Called when an account should be deleted
It’s a solution business decision whether the account is actually deleted or simply
disabled

Signature: DeleteCustomerResult DeleteCustomer(DeleteCustomerRequest

request)

Input:
 CommerceCustomer – An instance of the CommerceCustomer object is parsed in

Output:
 SystemMessages - Collection of messages from the external system.

Usage Example:

var customerService = new CustomerServiceProvider();

var customer = customerService.CreateCustomer(new CreateCustomerRequest(

 new CommerceCustomer

 {

 Name = "Bob",

 Shops = new[] { "webstore" },

 IsDisabled = false,

 ExternalId = "Jeff",

 Users = new[] { "Bob" }

 })).CommerceCustomer;

var deleteRequest = new DeleteCustomerRequest(customer);

var deleteResult = customerService.DeleteCustomer(deleteRequest);

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 103 of 150

GetCustomer

Name: GetCustomer

Description: Returns a single customer instance. Calls the pipeline "GetCustomer".

Usage: Called from Sitecore when searching for an account
Signature: GetCustomerResult GetCustomer(GetCustomerRequest request)

Input:
 ShopName – Mandatory
 ExternalID – Mandatory

The unique ID of the customer in the given shop.
Output:

 CommerceCustomer – An instance of the CommerceCustomer if it exists
 SystemMessages - Collection of messages from the external system.

Usage Example:

var customerService = new CustomerServiceProvider();

customerService.CreateCustomer(new CreateCustomerRequest(

 new CommerceCustomer

 {

 Name = "Bob",

 Shops = new[] { "webstore" },

 IsDisabled = false,

 ExternalId = "1234567890",

 Users = new[] { "Bob" }

 }));

var getRequest = new GetCustomerRequest("1234567890");

var result = customerService.GetCustomer(getRequest);

GetCustomers

Name: GetCustomers

Description: Queries and returns customer entities. Calls the pipeline "GetCustomers".
Different input parameters can be provided and they will be combined using logical
and

Usage: Called from Sitecore when searching for an account
Signature: GetCustomersResult GetCustomers(GetCustomersRequest request)

Input:
 ExternalIDs – optional

Can be a single or a list of IDs. When provided, it takes precedence
 SitecoreIDs – optional

Can be a single or a list of IDs.
 Name – optional
 ExternalUserIDs – Optional.

Can be a single or a list of IDs. Used when looking for customers associated with a
given user

 Disabled – optional
 ShopName – optional

Output:
 List<CommerceCustomer>
 SystemMessages - Collection of messages from the external system.

Usage Example:

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 104 of 150

var customerService = new CustomerServiceProvider();

customerService.CreateCustomer(new CreateCustomerRequest(

 new CommerceCustomer

 {

 Name = "Jeff",

 Shops = new[] { "autohaus" },

 IsDisabled = true,

 ExternalId = "Jeff",

 Users = new[] { "Jeff" }

 }));

customerService.CreateCustomer(new CreateCustomerRequest(

 new CommerceCustomer

 {

 Name = "Bob",

 Shops = new[] { "webstore" },

 IsDisabled = false,

 ExternalId = "Jeff",

 Users = new[] { "Bob" }

 }));

customerService.CreateCustomer(new CreateCustomerRequest(

 new CommerceCustomer

 {

 Name = "Michael",

 Shops = new[] { "autohaus" },

 IsDisabled = false,

 ExternalId = "Michael",

 Users = new[] { "Michael" }

 }));

customerService.CreateCustomer(new CreateCustomerRequest(

 new CommerceCustomer

 {

 Name = "Kerry",

 Shops = new[] { "webstore" },

 IsDisabled = true,

 ExternalId = "Michael",

 Users = new[] { "Michael" }

 }));

var result = customerService.GetCustomers(new GetCustomersRequest(new

CustomerSearchCriteria { IsDisabled = true }));

Sitecore.Diagnostics.Assert.AreEqual(2, result.CommerceCustomers.Count, "Should have 2

disabled");

result = customerService.GetCustomers(new GetCustomersRequest(new CustomerSearchCriteria

{ ExternalIDs = new[] { "Jeff" }, Name = "Bob" }));

Sitecore.Diagnostics.Assert.AreEqual(2, result.CommerceCustomers.Count, "Should have 1

match");

AddCustomers

Name: AddCustomers

Description: Add a customer to a user. Calls the pipeline "AddCustomers"

Usage: Called to associated a visitor to a user
Signature: AddCustomersResult AddCustomers(AddCustomersRequest request)

Input:
 List<string> CustomerIds – the customer ids to add to the user

Output:
 IReadOnlyCollection<string> CustomerIds – the list of customer ids associated

with the user
 SystemMessages - Collection of messages from the external system.

Usage Example:

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 105 of 150

var customerService = new CustomerServiceProvider();

// create a customer

customerService.CreateCustomer(new CreateCustomerRequest(

 new CommerceCustomer

 {

 Name = "Jeff",

 Shops = new[] { "autohaus" },

 ExternalId = "1234567890"

 }));

// create a user

var request = new CreateUserRequest("JohnSmith", "password", "john@abczyx.net",

"webstore");

var user = customerService.CreateUser(request).CommerceUser;

// add the customer to the user

var addRequest = new AddCustomersRequest(user, new List<string> { "1234567890" });

var addResult = customerService.AddCustomers(addRequest);

AddUsers

Name: AddUsers

Description: Add a user to a customer. Calls the pipeline "AddUsers"

Usage: Called to associated a user to a visitor
Signature: AddUsersResult AddUsers(AddUsersRequest request)

Input:
 List<string> UserIds – the user ids to add to the customer

Output:
 IReadOnlyCollection<string> UserIds – the list of user ids associated with the

customer
 SystemMessages - Collection of messages from the external system.

Usage Example:

var customerService = new CustomerServiceProvider();

// create a user

var request = new CreateUserRequest("JohnSmith", "password", "john@abczyx.net",

"webstore");

var user = customerService.CreateUser(request).CommerceUser;

// create a customer

var customer = customerService.CreateCustomer(new CreateCustomerRequest(

 new CommerceCustomer

 {

 Name = "Jeff",

 Shops = new[] { "autohaus" },

 ExternalId = "1234567890"

 })).CommerceCustomer;

// add the user to the customer

var addRequest = new AddUsersRequest(customer, new List<string> { user.ExternalId });

var addResult = customerService.AddUsers(addRequest);

RemoveCustomers

Name: RemoveCustomers

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 106 of 150

Description: Removes customers from a user. Calls the pipeline "RemoveCustomers"

Usage: Called to remove an associated visitor to a user
Signature: RemoveCustomersResult RemoveCustomers(RemoveCustomersRequest

request)

Input:
 List<string> CustomerIds – the customer ids to remove from the user

Output:
 IReadOnlyCollection<string> CustomerIds – the list of customer ids associated

with the user
 SystemMessages - Collection of messages from the external system.

Usage Example:

var customerService = new CustomerServiceProvider();

// create 2 customers

customerService.CreateCustomer(new CreateCustomerRequest(

 new CommerceCustomer

 {

 Name = "Jeff",

 Shops = new[] { "webstore" },

 ExternalId = "1234567890"

 }));

customerService.CreateCustomer(new CreateCustomerRequest(

 new CommerceCustomer

 {

 Name = "Bob",

 Shops = new[] { "webstore" },

 ExternalId = "9876543210"

 }));

// create a user

var request = new CreateUserRequest("JohnSmith", "password", "john@abczyx.net",

"webstore");

var user = customerService.CreateUser(request).CommerceUser;

// add the customers to the user

var addRequest = new AddCustomersRequest(user, new List<string> { "1234567890",

"9876543210" });

var addResult = customerService.AddCustomers(addRequest);

// remove a customer

var removeRequest = new RemoveCustomersRequest(user, new List<string> { "1234567890" });

var removeResult = customerService.RemoveCustomers(removeRequest);

RemoveUsers

Name: RemoveUsers

Description: Removes users from a customer. Calls the pipeline "RemoveUsers"

Usage: Called to remove an associated user to a visitor
Signature: RemoveUsersResult RemoveUsers(RemoveUsersRequest request)

Input:
 List<string> UserIds – the user ids to remove from the customer

Output:
 IReadOnlyCollection<string> UserIds – the list of user ids associated with the

customer
 SystemMessages - Collection of messages from the external system.

Usage Example:

var customerService = new CustomerServiceProvider();

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 107 of 150

// create 2 users

var request = new CreateUserRequest("JohnSmith", "password", "john@abczyx.net",

"webstore");

var user = customerService.CreateUser(request).CommerceUser;

request = new CreateUserRequest("JaneSmith", "passWord", "jane@jane.net", "webstore");

var user2 = customerService.CreateUser(request).CommerceUser;

// create a customer

var customer = customerService.CreateCustomer(new CreateCustomerRequest(

 new CommerceCustomer

 {

 Name = "Jeff",

 Shops = new[] { "autohaus" },

 ExternalId = "1234567890"

 })).CommerceCustomer;

// add the users to the customer

var addRequest = new AddUsersRequest(customer, new List<string> { user.ExternalId,

user2.ExternalId });

var addResult = customerService.AddUsers(addRequest);

// remove a user

var removeRequest = new RemoveUsersRequest(customer, new List<string> { user.ExternalId

});

var removeResult = customerService.RemoveUsers(removeRequest);

AddCustomerParties

Name: AddCustomerParties

Description:

This method is responsible for adding one or more given customer parties to the
specified customer

Usage: Called from Sitecore when adding parties to a customer account, typically during
checkout or editing the customer account

Signature: AddCustomerPartiesResult AddCustomerParties

(AddCustomerPartiesRequest request)

Input:
 Customer – CommerceCustomer. Mandatory

An instance of the customer
 CustomerParties – List<CustomerParty>. Mandatory

A list of customer parties to associate with the customer
Output:

 Customer - Customer. Mandatory
 SystemMessages - Collection of messages from the external system.

Usage Example:

var customerService = new CustomerServiceProvider();

// create a customer

var customer = customerService.CreateCustomer(new CreateCustomerRequest(

 new CommerceCustomer

 {

 Name = "Jeff",

 Shops = new[] { "autohaus" },

 ExternalId = "1234567890"

 })).CommerceCustomer;

// create the add request

var request = new AddCustomerPartiesRequest(customer,

 new List<CustomerParty>

 {

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 108 of 150

 new CustomerParty {ExternalId = "1234567890", PartyID = "1", Name = "HomeAddess",

PartyType = 2}

 });

var result = customerService.AddCustomerParties(request);

RemoveCustomerParties

Name: RemoveCustomerParties

Description:

This method is responsible for removing one or more given customer parties from
the specified customer

Usage: Called from Sitecore when removing parties to a customer account, typically when
editing the customer account

Signature: RemoveCustomerPartiesResult RemoveCustomerParties

(RemoveCustomerPartiesRequest request)

Input:
 Customer – CommerceCustomer. Mandatory

An instance of the customer
 Parties – List<Party>. Mandatory

A list of customer parities to un-associate with the customer
Output:

 Customer - Customer. Mandatory
 SystemMessages - Collection of messages from the external system.

Usage Example:

var customerService = new CustomerServiceProvider();

// create a customer

var customer = customerService.CreateCustomer(new CreateCustomerRequest(

 new CommerceCustomer

 {

 Name = "Jeff",

 Shops = new[] { "autohaus" },

 ExternalId = "1234567890"

 })).CommerceCustomer;

var parties = new List<CustomerParty>

{

 new CustomerParty {ExternalId = "1234567890", PartyID = "1", Name = "HomeAddess",

PartyType = 2}

};

// create the add request

var request = new AddCustomerPartiesRequest(customer, parties);

var result = customerService.AddCustomerParties(request);

// remove the parties

var removeRequest = new RemoveCustomerPartiesRequest(customer, parties);

var removeResult = customerService.RemoveCustomerParties(removeRequest);

UpdateCustomerParties

Name: UpdateCustomerParties

Description:

This method is responsible for updating one or more given customer parties on the
specified customer

Usage: Called from Sitecore when updating parties on a customer account, typically when
editing the customer account

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 109 of 150

Signature: UpdateCustomerPartiesResult UpdateCustomerParties

(UpdateCustomerPartiesRequest request)

Input:
 Customer – CommerceCustomer. Mandatory

An instance of the customer
 Parties – List<Party>. Mandatory

A list of customer parities to update on the customer
Output:

 Customer - Customer. Mandatory
 SystemMessages - Collection of messages from the external system.

Usage Example:

var customerService = new CustomerServiceProvider();

// create a customer

var customer = customerService.CreateCustomer(new CreateCustomerRequest(

 new CommerceCustomer

 {

 Name = "Jeff",

 Shops = new[] { "autohaus" },

 ExternalId = "1234567890"

 })).CommerceCustomer;

var parties = new List<CustomerParty>

{

 new CustomerParty {ExternalId = "1234567890", PartyID = "1", Name = "HomeAddess",

PartyType = 2}

};

// create the add request

var request = new AddCustomerPartiesRequest(customer, parties);

var result = customerService.AddCustomerParties(request);

parties.Add(new CustomerParty { ExternalId = "9876543210", PartyID = "2", Name =

"BillingAddess", PartyType = 1 });

// update the parties

var updateRequest = new UpdateCustomerPartiesRequest(customer, parties);

var updateResult = customerService.UpdateCustomerParties(updateRequest);

AddParties

Name: AddParties

Description:

This method is responsible for adding one or more given customer parties to the
specified customer

Usage: Called from Sitecore when adding parties to a customer account, typically during
checkout or editing the customer account

Signature: AddPartiesResult AddParties(AddPartiesRequest request)

Input:
 Customer – CommerceCustomer. Mandatory

An instance of the customer
 Parties – List<Party>. Mandatory

A list of customer parties to add
Output:

 Customer - Customer. Mandatory
 SystemMessages - Collection of messages from the external system.

Usage Example:

var customerService = new CustomerServiceProvider();

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 110 of 150

// create a customer

var customer = customerService.CreateCustomer(new CreateCustomerRequest(

 new CommerceCustomer

 {

 Name = "Jeff",

 Shops = new[] { "autohaus" },

 ExternalId = "1234567890"

 })).CommerceCustomer;

var parties = new List<Party>

{

 new Party {ExternalId = "1234567890", Address1 = "123 My Street", City = "My City",

Country = "My Country", PartyId = "1"}

};

// add the party

var addRequest = new AddPartiesRequest(customer, parties);

var addResult = customerService.AddParties(addRequest);

GetParties

Name: GetParties

Description:

This method is responsible for getting all the parties

Usage: Called from Sitecore when adding parties to a customer account, typically during
checkout or editing the customer account

Signature: AddPartiesResult AddParties(AddPartiesRequest request)

Input:
 Customer – CommerceCustomer. Mandatory

An instance of the customer
Output:

 Parties – List<Party>
A list of parties

 SystemMessages - Collection of messages from the external system.

Usage Example:

var customerService = new CustomerServiceProvider();

// create a customer

var customer = customerService.CreateCustomer(new CreateCustomerRequest(

 new CommerceCustomer

 {

 Name = "Jeff",

 Shops = new[] { "autohaus" },

 ExternalId = "1234567890"

 })).CommerceCustomer;

var parties = new List<Party>

{

 new Party {ExternalId = "1234567890", Address1 = "123 My Street", City = "My City",

Country = "My Country", PartyId = "1"}

};

// add the party

var addRequest = new AddPartiesRequest(customer, parties);

var addResult = customerService.AddParties(addRequest);

// get the party

var getRequest = new GetPartiesRequest(customer);

var getResult = customerService.GetParties(getRequest);

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 111 of 150

RemoveParties

Name: RemoveParties

Description:

This method is responsible for removing one or more given customer parties from
the specified customer

Usage: Called from Sitecore when removing parties to a customer account, typically when
editing the customer account

Signature: RemovePartiesResult RemoveParties(RemovePartiesRequest

request)

Input:
 Customer – CommerceCustomer. Mandatory

An instance of the customer
 Parties – List<Party>. Mandatory

A list of customer parties to remove
Output:

 Customer - Customer. Mandatory
 SystemMessages - Collection of messages from the external system.

Usage Example:

var customerService = new CustomerServiceProvider();

// create a customer

var customer = customerService.CreateCustomer(new CreateCustomerRequest(

 new CommerceCustomer

 {

 Name = "Jeff",

 Shops = new[] { "autohaus" },

 ExternalId = "1234567890"

 })).CommerceCustomer;

var parties = new List<Party>

{

 new Party {ExternalId = "1234567890", Address1 = "123 My Street", City = "My City",

Country = "My Country", PartyId = "1"}

};

// add the party

var addRequest = new AddPartiesRequest(customer, parties);

var addResult = customerService.AddParties(addRequest);

// remove the party

var removeRequest = new RemovePartiesRequest(customer, parties);

var getResult = customerService.RemoveParties(removeRequest);

UpdateParties

Name: UpdateParties

Description:

This method is responsible for updating one or more given customer parties on the
specified customer

Usage: Called from Sitecore when updating parties on a customer account, typically when
editing the customer account

Signature: UpdatePartiesResult UpdateParties(UpdatePartiesRequest

request)

Input:
 Customer – CommerceCustomer. Mandatory

An instance of the customer
 Parties – List<Party>. Mandatory

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 112 of 150

A list of parties to update
Output:

 Customer - Customer. Mandatory
 SystemMessages - Collection of messages from the external system.

Usage Example:

var customerService = new CustomerServiceProvider();

// create a customer

var customer = customerService.CreateCustomer(new CreateCustomerRequest(

 new CommerceCustomer

 {

 Name = "Jeff",

 Shops = new[] { "autohaus" },

 ExternalId = "1234567890"

 })).CommerceCustomer;

var parties = new List<Party>

{

 new Party {ExternalId = "1234567890", Address1 = "123 My Street", City = "My City",

Country = "My Country", PartyId = "1"}

};

// add the party

var addRequest = new AddPartiesRequest(customer, parties);

var addResult = customerService.AddParties(addRequest);

parties.Add(new Party { ExternalId = "9876543210", Address1 = "123 My Road", City = "My

Town", Country = "Your Country", PartyId = "2" });

// update the parties

var updateRequest = new UpdatePartiesRequest(customer, parties);

var getResult = customerService.UpdateParties(updateRequest);

UpdatePassword

Name: UpdatePassword

Description: Change the user password. Calls the pipeline "UpdatePassword"
Usage: Called from Sitecore when password needs to be changed.

Signature: UpdatePasswordResult UpdatePassword(UpdatePasswordRequest

request)

Input:
 UserID – Mandatory The ID of the user to change the password for
 OldPassword – Mandatory.

The old password
 NewPassword – Mandatory

The new password
Output:

 SystemMessages - Collection of messages from the external system.

Usage Example:

var customerService = new CustomerServiceProvider();

// create a customer

var request = new CreateUserRequest("JohnSmith", "password", "john@abczyx.net",

"webstore");

customerService.CreateUser(request);

// update the password

var updateRequest = new UpdatePasswordRequest("JohnSmith", "password", "nEwPaSsWoRd");

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 113 of 150

var result = customerService.UpdatePassword(updateRequest);

2.5.3 Customer Pipelines

CreateUser

Depending on the actual integration with ECS and the solution then the user can be disabled by default
and will get activated when ActivateUserAccount is called

Name: CreateUser

Description: This pipeline is responsible for creating a user account

Usage: Called from Sitecore.

Args:

 Request - Contains the user entity and a password. Is set prior to calling the
pipeline.

 Response - Contains the user object. Is read after the pipeline is called.

Processors:

 CreateUserInECS – Optional

Creates a user in the external commerce system and updates the field ExternalID
on the user entity.

Note: If External ID is parsed in and the user already exists, nothing should happen

Note: This processor is optional but recommended if CommerceUsers are
supported in the ECS.

 CreateUserInCMS – (Mandatory)

Creates the user but more importantly stores the relation to CommerceCustomer in
Sitecore, using the membership and profile providers.

If user already exists, then the pipeline should be aborted to avoid triggering the
goal.

Note: This processor is mandatory to store the 1-to-many relationship between the
CommerceUser and CommerceCustomer. If that is handled in the ECS, the
processor is not mandatory

 TriggerDMSGoal –

The goal “User Account Created” is triggered with values User name and
ShopName.

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 114 of 150

 AddVisitorToEAPlan –

Adds visitor / contact to EA plan. For example, “User Account Registered”, which
sends an account activation mail and later a welcome mail when the account has
been activated

UpdateUser

Name: UpdateUser

Description: This pipeline is responsible for updating an existing user account.

Usage: Called from Sitecore.

Args:

 Request - Contains the user entity. Is set prior to calling the pipeline.

 Response - Contains the user entity. Is read after the pipeline is called.

Processors:

 UpdateUserInECS – Optional

Updates an existing user account in the external commerce system.

Note: This processor is optional but recommended if CommerceUsers are
supported in the ECS.

 UpdateUserInCMS – Mandatory

Updates the user account in the Sitecore. Since the user is updated externally first,
then the user data can be changed there and the final version is stored in CMS.

Note: This processor is mandatory to store the 1-to-many relationship between the
CommerceUser and CommerceCustomer. If that is handled in the ECS, the
processor is not mandatory

 TriggerDMSEvent – the page event “User Account Updated” is triggered with
values User name and ShopName.

DeleteUser

Name: DeleteUser

Description: This pipeline is responsible for deleting an existing user account.

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 115 of 150

Usage: Called from Sitecore.

Args:

 Request - Contains the user entity. Is set prior to calling the pipeline.

 Response -

Processors:

 DeleteUserInECS – Optional

Deletes an existing user in the external commerce system.

Note: If user account doesn’t exists it can be noted in returned collection of External
System Messages, but the pipeline must continue

Note: This processor is optional but recommended if CommerceUsers are
supported in the ECS.

 DeleteUserInCMS – Mandatory

Deletes the user in the Sitecore.

Note: If user account doesn’t exist, the pipeline is aborted

Note: This processor is mandatory to store the 1-to-many relationship between the
CommerceUser and CommerceCustomer. If that is handled in the ECS, the
processor is not mandatory

 TriggerDMSEvent – the page event “User Account Deleted” is triggered with
values User name and ShopName.

DisableUser

Name: DisableUser

Description: This pipeline is responsible for disabling an existing user account.

Usage: Called from Sitecore.

Args:

 Request - Contains the user entity and a comment. Is set prior to calling the
pipeline.

 Response - Is read after the pipeline is called.

Processors:

 DisableUserInECS – Optional

Disables an existing user in the external commerce system.

 DisableUserInCMS – Mandatory

Disables the user in Sitecore.

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 116 of 150

Note: Since the user is attempted disabled externally first, then it is possible that
the pipeline is aborted due to business rules and the users are still synchronized

Note: This processor is mandatory to store the 1-to-many relationship between the
CommerceUser and CommerceCustomer. If that is handled in the ECS, the
processor is not mandatory

 TriggerDMSEvent – the page event “User Account Disabled” is triggered with
values User name, ShopName and the provided comment.

EnableUser

Name: EnableUser

Description: This pipeline is responsible for enabling an existing user account.

Usage: Called from Sitecore.

Args:

 Request - Contains the user entity and a comment. Is set prior to calling the
pipeline.

 Response - Is read after the pipeline is called.

Processors:

 EnableUserInECS – Optional

Enables an existing user in the external commerce system.

Note: Either this processor or the next should be in the pipeline, normally not both

 EnableUserInCMS – Mandatory

Enables the user in Sitecore.

Note: Since the user is attempted enabled externally first, then it is possible that the
pipeline is aborted due to business rules and the users are still synchronized

Note: This processor is mandatory to store the 1-to-many relationship between the
CommerceUser and CommerceCustomer. If that is handled in the ECS, the
processor is not mandatory

 TriggerDMSEvent – the goal “User Account Enabled” is triggered with values User
name, ShopName and the provided comment.

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 117 of 150

GetUsers

Name: GetUsers

Description: Queries and returns user accounts.

Different input parameters can be provided and they will be combined using logical
and

Usage: Called from Sitecore when a visitor is registering for an account. It could be during
the checkout process or through plain signup.

Args:

 Request - Contains search parameters. Is set prior to calling the pipeline.

 Response – Returns a list of user entities. Is read after the pipeline is called.

Processors:

 GetUsersFromECS – Optional

Queries against users in the external commerce system.

Note: Either this processor or the next should be in the pipeline, normally not both

Note: This processor is optional but recommended if CommerceUsers are
supported in the ECS.

 GetUsersFromCMS – Mandatory

Queries against users in CMS.

Note: Either this processor or the next should be in the pipeline, normally not both

GetUser

Name: GetUser

Description: Returns a single user account.

Usage: Called from Sitecore when a visitor a specific user account is needed

Args:

 Request - Contains ShopName and User ID. Is set prior to calling the pipeline.

 Response – Returns a single user entity. Is read after the pipeline is called.

Processors:

 GetUserFromECS – Optional

Gets the specified user from the external commerce system.

Note: Either this processor or the next should be in the pipeline, normally not both

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 118 of 150

Note: This processor is optional but recommended if CommerceUsers are
supported in the ECS.

 GetUserFromCMS – Mandatory

Gets the specified user from CMS.

Note: Either this processor or the next should be in the pipeline, normally not both

CreateCustomer

Name: CreateCustomer

Description: This pipeline is responsible for creating a customer account. The customers are
managed by the commerce system.

Usage: Called from Sitecore

Args:

 Request - Contains the customer entity. Is set prior to calling the pipeline.

 Response - Contains the customer entity after the pipeline is called.

Processors:

 CreateCustomerInECS – Optional

Depends on whether Customers are supported in the ECS

Creates customer in external commerce system.

It involves:

o Create unique customer account in external system

o Create mapping between Customer and any given user accounts

Note: If External ID is parsed in and the customer already exists, nothing should
happen

 CreateCustomerInSitecore – (Mandatory)

Creates customer in Sitecore

Note: This processor is mandatory to store the 1-to-many relationship between the
CommerceUser and CommerceCustomers. If that is handled in the ECS, the
processor is not mandatory

 AddCustomerToEAplan–

Adds the customer to EA plan Customers storing a reference to the
CommerceCustomer in EA state

Since the customer potentially is created externally first, then the external ID of the
customer is given and can be stored in Sitecore too, making the connection
between the two.

Note: If External ID is parsed in and the customer already exists, then the pipeline
should be aborted to avoid triggering the goal.

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 119 of 150

 TriggerDMSGoal – the goal “Customer Account Created” is triggered with values
customer name and ShopName

GetCustomers

Name: GetCustomers

Description: Queries and returns customer accounts.

Different input parameters can be provided and they will be combined using logical
and

Whether the customers are retrieved from ECS or CMS depends on the support of
customers in ECS

Usage: Called from Sitecore

Args:

 Request - Contains search parameters.. Is set prior to calling the pipeline.

 Response - Returns a list of customer entities after the pipeline is called.

Processors:

 GetCustomersFromECS – optional

Queries against customers in the external commerce system. If the required search
functionality is not supported in the ECS, then it can potentially be handled by
searching for customers in CMS.

Note: Either this processor or the next should be in the pipeline, normally not both

 GetCustomersFromCMS – optional

Queries against Customers in CMS. If the required search functionality is not
supported in CMS, then it can potentially be handled by searching for users in the
ECS

Note: Either this processor or the previous should be in the pipeline, normally not
both

GetCustomer

Name: GetCustomer

Description: Returns the single customer entity with the specified ID

Whether the customer is retrieved from ECS or CMS depends on the support of
customers in ECS

Usage: Called from Sitecore

Args:

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 120 of 150

 Request - Contains shop name and Customer ID. Is set prior to calling the pipeline.

 Response - Returns a single customer entity after the pipeline is called.

Processors:

 GetCustomerFromECS – optional

Gets the specified customer from the external commerce system.

Note: Either this processor or the next should be in the pipeline, normally not both

 GetCustomersFromCMS – Mandatory

Gets the specified customer from CMS.

Note: Either this processor or the previous should be in the pipeline, normally not
both

UpdateCustomer

Name: UpdateCustomer

Description: This pipeline is responsible for updating an existing customer account. The
customers are managed by the commerce system.

Usage: Called from Sitecore

Args:

 Request - Contains the customer entity. Is set prior to calling the pipeline.

 Response - Contains the customer object. Is read after the pipeline is called.

Processors:

 UpdateCustomerInECS – Mandatory

Updates customer in external commerce system.

 SaveCustomertoEAState – mandatory

Updates the customer stored in EA state based on updated CommerceCustomer
returned from previous processor

 TriggerDMSEvent – the goal “Customer Account Updated” is triggered with values
customer name and ShopName

DeleteCustomer

Name: DeleteCustomer

Description: This pipeline is responsible for deleting an existing customer account. The
customers are managed by the commerce system.

Usage: Called from Sitecore

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 121 of 150

Args:

 Request - Contains the customer entity. Is set prior to calling the pipeline.

 Response -

Processors:

 DeleteCustomerInECS – Mandatory

Deletes customer in external system.

Note: If customer account doesn’t exists it can be noted in returned collection of
External System Messages, but the pipeline must continue

 RemoveCustomerFromEAState – Mandatory

Removes the customer stored in EA state

 TriggerDMSEvent – the goal “Customer Account Deleted” is triggered with values
customer name and ShopName

DisableCustomer

Name: DisableCustomer

Description: This pipeline is responsible for disabling an existing customer account.

Usage: Called from Sitecore.

Args:

 Request - Contains the customer entity and a comment. Is set prior to calling the
pipeline.

 Response – The disabled customer entity. Is read after the pipeline is called.

Processors:

 DisableCustomerInECS –

Disables an existing customer in the external commerce system.

 SaveCustomertoEAState – mandatory

Updates the customer stored in EA state based on updated CommerceCustomer
returned from previous processor

 TriggerDMSEvent – the page event “Customer Account Disabled” is triggered with
values Name, ShopName and the provided comment.

EnableCustomer

Name: EnableCustomer

Description: This pipeline is responsible for enabling an existing customer account.

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 122 of 150

Usage: Called from Sitecore.

Args:

 Request - Contains the customer entity and a comment. Is set prior to calling the
pipeline.

 Response – The enabled customer entity. Is read after the pipeline is called.

Processors:

 EnableCustomerInECS –

Enables an existing customer in the external commerce system.

 SaveCustomertoEAState – mandatory

Updates the customer stored in EA state based on updated CommerceCustomer
returned from previous processor

 TriggerDMSEvent –

the pageevent “Customer Account Enabled” is triggered with values Name,
ShopName and the provided comment.

AddCustomerParties

Name: AddCustomerParties

Description: This pipeline is responsible for adding customer parties to the specified customer

Usage: Called from Sitecore.

Args:

 Request - Contains a customer and a list of CustomerParty instances. Is set prior
to calling the pipeline.

 Response – A new instance of the customer Is read after the pipeline is called.

Processors:

 AddCustomerParties –

Responsibility: Is to add the provided parties to the customer account and persist
them

Usage: Mandatory.

Ownership: The processor is provided with Connect and stores the parties with the
customer account using the Sitecore membership provider

Customization: No immediate need to customize.

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 123 of 150

There should be a separate processor for storing the parties in the ECS. The
processor should either replace this processor or be added in addition to this
processor

RemoveCustomerParties

Name: RemoveCustomerParties

Description: This pipeline is responsible for removing customer parties from the specified
customer

Usage: Called from Sitecore.

Args:

 Request - Contains a customer and a list of CustomerParty instances. Is set prior
to calling the pipeline.

 Response – A new instance of the customer Is read after the pipeline is called.

Processors:

 RemoveCustomerParties –

Responsibility: Is to remove the provided parties from the customer account

Usage: Mandatory.

Ownership: The processor is provided with Connect and removes the parties which
will no longer be persisted anywhere in Sitecore

Customization: No immediate need to customize.

There should be a separate processor for storing the parties in the ECS. The
processor should either replace this processor or be added in addition to this
processor

UpdateCustomerParties

Name: UpdateCustomerParties

Description: This pipeline is responsible for updating customer parties on the specified customer

Usage: Called from Sitecore.

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 124 of 150

Args:

 Request - Contains a customer and a list of CustomerParty instances. Is set prior
to calling the pipeline.

 Response – A new instance of the customer Is read after the pipeline is called.

Processors:

 UpdateCustomerParties –

Responsibility: Is to update the provided parties on the customer account and
persist them

Usage: Mandatory.

Ownership: The processor is provided with Connect and stores the updated parties
with the customer account using the Sitecore membership provider

Customization: No immediate need to customize.

There should be a separate processor for storing the parties in the ECS. The
processor should either replace this processor or be added in addition to this
processor

GetParties

Name: GetParties

Description: This pipeline is responsible for getting the parties

Usage: Called from Sitecore.

Args:

 Request - Contains a customer. Is set prior to calling the pipeline.

 Response – A list of parties. Is read after the pipeline is called.

Processors:

 GetParties –

Responsibility: Is to return the complete list of parties stored with the customer

Usage: Mandatory.

Ownership: The processor is provided with Connect and stores the parties with the
customer account using the Sitecore membership provider

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 125 of 150

Customization: No immediate need to customize.

There should be a separate processor for storing the parties in the ECS. The
processor should either replace this processor or be added in addition to this
processor

AddParties

Name: AddParties

Description: This pipeline is responsible for adding parties to the specified customer

Usage: Called from Sitecore.

Args:

 Request - Contains a customer and a list of CustomerParty instances. Is set prior
to calling the pipeline.

 Response – A new instance of the customer Is read after the pipeline is called.

Processors:

 AddParties –

Responsibility: Is to add the provided parties to the customer account and persist
them

Usage: Mandatory.

Ownership: The processor is provided with Connect and stores the parties with the
customer account using the Sitecore membership provider

Customization: No immediate need to customize.

There should be a separate processor for storing the parties in the ECS. The
processor should either replace this processor or be added in addition to this
processor

RemoveParties

Name: RemoveParties

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 126 of 150

Description: This pipeline is responsible for removing parties stored with the specified customer

Usage: Called from Sitecore.

Args:

 Request - Contains a customer and a list of party instances. Is set prior to calling
the pipeline.

 Response – A new instance of the customer Is read after the pipeline is called.

Processors:

 RemoveParties –

Responsibility: Is to remove the provided parties from the customer account

Usage: Mandatory.

Ownership: The processor is provided with Connect and removes the parties which
will no longer be persisted anywhere in Sitecore

Customization: No immediate need to customize.

There should be a separate processor for storing the parties in the ECS. The
processor should either replace this processor or be added in addition to this
processor

UpdateParties

Name: UpdateParties

Description: This pipeline is responsible for updating customer parties on the specified customer

Usage: Called from Sitecore.

Args:

 Request - Contains a customer and a list of CustomerParty instances. Is set prior
to calling the pipeline.

 Response – A new instance of the customer Is read after the pipeline is called.

Processors:

 UpdateParties –

Responsibility: Is to update the provided parties on the customer account and
persist them

Usage: Mandatory.

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 127 of 150

Ownership: The processor is provided with Connect and stores the updated parties
with the customer account using the Sitecore membership provider

Customization: No immediate need to customize.

There should be a separate processor for storing the parties in the ECS. The
processor should either replace this processor or be added in addition to this
processor

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 128 of 150

2.6 Product Sync

2.6.1 The Product Sync Domain Model

This chapter describes the domain model that represents the product objects where the following three
assertions holds true:

 The domain model primarily serves as DTO objects for transferring information between the
external commerce system and Sitecore.

 The domain model contains the minimum required information as contracts and will typically be
extended, when integrated with a specific commerce system.

 The domain model is used when a Sitecore developer needs to synchronize product data with the
external commerce system or product data is pushed into Sitecore from the external commerce
system

The class diagram below shows the domain model.

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 129 of 150

Note: The domain model consists of abstract classes that make up the contracts with the external system.
The contracts are defined as abstract classes instead of interfaces to allow the model to be easily
extended later if needed. This follow the best practice guidelines defined in the book Framework Design
Guidelines.

Default implementation of the contracts are delivered as part of Connect. If an actual Connect provider
with an external commerce system contains more functionality that provided by default, the
implementation can be replaced. All instantiation of actual classes will be handled through dependency
injection.

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 130 of 150

Class: Product

The product class is responsible for representing a product or any variant of it, hence a variant is a
product in this model.

Name Type Description

ExternalId string Unique identifier for the
product in the
commerce system. This
can be used to get a
reference to the product
using the commerce
system's native API.

SitecoreItemId string Returns the Sitecore ID
Name string Name of the product
ShortDescription string The short description of

the product.
FullDescription string The full description of

the product.
ProductType ProductType A reference to the

product type
Manufacturers Manufacturer Reference to the

manufacturers
ClassificationGroups IReadOnlyCollection<ProductClassificationGroup> Reference to the

associated
classifications and
categories

Specifications ProductSpecifications Collection of
specifications set
directly on the product

VariantSpecifications ProductVariantSpecifications List of references to
specifications that tells
the variants apart and
which potentially can be
selectable to the visitor

Resources IReadOnlyCollection<ProductResource> Reference to the
associated resources

Divisions IReadOnlyCollection<Division> Reference to the
associated divisions

RelationTypes IReadOnlyCollection<ProductRelationType> Reference to the related
products

Created DateTime Date of creation
Updated DateTime Date of last update

Class: ProductSpecifications
Name Type Description

ExternalId string Unique identifier used to identify
the item in an external system.

SitecoreItemId string Represents the Sitecore Id.
Specifications IReadOnlyCollection<ProductSpecification>

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 131 of 150

Created DateTime
Updated DateTime

Class: ProductSpecification
Name Type Description

ExternalId string Unique identifier used to identify the
item in an external system.

SitecoreItemId string Represents the Sitecore Id.
Group String
Key String
Value String
Created DateTime
Updated DateTime

Class: ProductClassification
Name Type Description

ExternalId string Unique identifier used to identify the
item in an external system.

ExternalParentId string
SitecoreItemId string Represents the Sitecore Id.
Name string
Description string
Specifications ProductSpecifications
Created DateTime
Updated

Class: ProductType
Name Type Description

ExternalId string Unique identifier used to identify the
item in an external system.

SitecoreItemId string Represents the Sitecore Id.
ProductTypeId String
Description String
Specifications ProductSpecifications
Created DateTime
Updated DateTime

Class: ProductManufacturer
Name Type Description

ExternalId string Unique identifier used to identify
the item in an external system.

SitecoreItemId string Represents the Sitecore Id.
Name String
Description String
WebSiteUrl String

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 132 of 150

ProductTypes IReadOnlyCollection<ProductType>
Created DateTime
Updated DateTime

Class: ProductClassificationGroup
Name Type Description

ExternalId string Unique identifier used to identify
the item in an external system.

SitecoreItemId string Represents the Sitecore Id.
Name String
Description String
Classifications IReadOnlyCollection<ProductClassification>
Created DateTime
Updated Name

Class: ProductVariantSpecificaions
Name Type Description

ExternalId string Unique identifier used to identify
the item in an external system.

SitecoreItemId string Represents the Sitecore Id.
Specifications IReadOnlyCollection<ProductSpecification>
Created DateTime
Updated DateTime

Class: ProductResource
Name Type Description

ExternalId string Unique identifier used to identify the
item in an external system.

SitecoreItemId string Represents the Sitecore Id.
Created DateTime
Updated DateTime

Class: Division
Name Type Description

ExternalId string Unique identifier used to identify
the item in an external system.

SitecoreItemId string Represents the Sitecore Id.
Name String
SubDivisions IReadOnlyCollection<Division>
Created DateTime
Updated DateTime

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 133 of 150

Class: ProductRelation
Name Type Description

ExternalId string Unique identifier used to identify the
item in an external system.

SitecoreItemId string Represents the Sitecore Id.
Product Product
ReferredProduct Product
Created DateTime
Updated DateTime

Class: ProductRelationType
Name Type Description

ExternalId string Unique identifier used to identify
the item in an external system.

SitecoreItemId string Represents the Sitecore Id.
Name String
Relations IReadOnlyCollection<ProductRelation>
Created DateTime
Updated DateTime

2.6.2 Product Sync Service Methods

Service providers are wrapper objects designed to make it easier to interact with Connect pipelines. The
providers implement no logic other than calling Connect pipelines. All of the business logic is
implemented in the pipeline processors.

The Product Sync Service Provider contains the following methods for interacting with product sync data.

SynchronizeProducts

SyncronizeProducts is used to synchronize a collection of products between the external commerce
system and Sitecore.

The synchronization can go both ways, so changes made to product data in CMS content are pushed to
the external commerce system.

A log must be kept of events registered during synchronization. At minimum it should contain a list of
products successfully updated. It would be better

Upon return the result contains the list of messages generated during synchronization, which would be
the Ids of the products that failed during synchronization

Name: SynchronizeProducts

Description: SynchronizeProducts calls the pipeline " SynchronizeProducts" to synchronize
changes to all updated products and related repositories

Usage: Called from Sitecore or the ECS when the product manager wants to update
products both from and to the ECS

Signature: SynchronizeProductsResult

SynchronizeProducts(SynchronizeProductsRequest request)

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 134 of 150

Input:
 Language – string, optional.

The language for the product data being synchronized. Default is English (“en” or
“US-EN”)

 Direction – optional. An enum type indicating whether synchronization goes from
ECS -> SC, SC -> ECS or both ways. The default is ECS -> SC. See section Error!
Reference source not found. for more.

Output:
 SystemMessages - Collection of messages from the external system.

SynchronizeProductList
Name: SynchronizeProductList

Description: SynchronizeProductList calls the pipeline " SynchronizeProductList"
Usage: Called from Sitecore or the ECS when the product manager wants to update a

list of products both from and to the ECS
Signature: SynchronizeProductListResult

SynchronizeProductList(SynchronizeProductListRequest

request)

Input:
List<ExternalProductIds> - List of strings, mandatory
The list of external product ids to synchronize

 Language – string, optional.
The language for the product data being synchronized. Default is English (“en” or
“US-EN”)

 Direction – enum, optional
An enum type indicating whether synchronization goes from ECS -> SC, SC ->
ECS or both ways. The default is ECS -> SC. See section Error! Reference
source not found. for more.

Output:

 SystemMessages - Collection of messages from the external system.

SynchronizeProduct

SyncProduct is used to synchronize a single product between the external commerce system and
Sitecore. The product to synchronize is given by ID.

The synchronization can go both ways, so changes made to product data in CMS content are pushed to
the external commerce system as well.

Name: SynchronizeProduct

Description: SynchronizeProduct calls the pipeline " SynchronizeProduct"
Usage: Called from Sitecore or the ECS when the product manager wants to update a

single product both from and to the ECS
Signature: SynchronizeProductResult

SynchronizeProduct(SynchronizeProductRequest request)

Input:
 ProductId – string, mandatory

The external product id to be synchronized
 Language – string, optional.

The language for the product data being synchronized. Default is English (“en” or
“US-EN”)

 Direction – enum, optional

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 135 of 150

An enum type indicating whether synchronization goes from ECS -> SC, SC -> ECS
or both ways. The default is ECS -> SC. See section Error! Reference source not
found. for more.

Output:
 SystemMessages - Collection of messages from the external system.

SynchronizeArtifacts

SynchronizeArtifacts is responsible for synchronizing all the related repositories: Manufacturers, Types,
Classifications, Divisions, Resources, and Specifications before the individual products are synchronized
the references to repositories are updated.

Name: SynchronizeArtifacts

Description: SynchronizeArtifacts calls the pipeline " SynchronizeArtifacts" to synchronize all the
related repositories: Manufacturers, Types, Classifications, Divisions, Resources,
Specifications

Usage: Called from Sitecore or the ECS when the product manager wants to update the
product related repositories

Signature: SynchronizeArtifactsResult SynchronizeArtifacts

(SynchronizeArtifactsRequest request)

Input:
 Language – string, optional.

The language for the product data being synchronized. Default is English (“en” or
“US-EN”)

Output:

 SystemMessages - Collection of messages from the external system.

2.6.3 Product Sync Pipelines

SynchronizeProducts

SyncronizeProducts is used to synchronize products between the external commerce system and
Sitecore.

Name:
SynchronizeProducts

Description: This pipeline is responsible for obtaining the lists of product Ids to be synchronized
and iterate over them

Usage: Called from Sitecore or the external commerce system
Args:

 Request – Is empty by default. Is set prior to calling the pipeline.
 Response - Contains the list of messages generated during synchronization, which

would be the Ids of the products that failed during synchronization Is read after the
pipeline is called.

Processors:

 RunSynchronizeArtifacts – Calls individual pipeline to synchronize all the related
repositories: Manufacturers, Types, Classifications, Divisions, Resources,
Specifications

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 136 of 150

RunGetSCProductList – Obtain the list of product ids to synchronize from
Sitecore. This processor can be left out if product data is only pushed from the
external system

 RunGetECSProductList - Obtain the list of product ids to synchronize from ECS
 EvaluateProductListUnionToSynchronize – Creates the union of product Ids to

be synchronized based on the two lists obtained from ECS and SC
 RunSynchronizeProductList – Calls individual pipeline with the evaluated list of

product IDs to synchronize

SynchronizeProductList

SyncronizeProductlist is used to synchronize a given list of products between the external commerce
system and Sitecore.

Name:
SynchronizeProductList

Description: This pipeline is responsible for iterating over the given list of product Ids and
synchronize

Usage: Called from Sitecore or the external commerce system
Args:

 Request – List of product Ids to synchronize. Is set prior to calling the pipeline.
 Response - Contains the list of messages generated during synchronization, which

would be the Ids of the products that failed during synchronization Is read after the
pipeline is called.

Processors:

 SynchronizeProductList - Iterates over the given list of product Ids and runs
pipeline SynchronizeProduct for each product

GetExternalCommerceSystemProductList

Name:
GetExternalCommerceSystemProductList

Description: This pipeline is responsible for obtaining the list of product Ids to be synchronized
from the external commerce system

Usage: Called internally from SynchronizeProducts but can also be called explicitly from
both ECS or SC

Args:
 Request – No default data. Is set prior to calling the pipeline.
 Response - Contains the list of product Ids to be synchronized and

SystemMessages. Is read after the pipeline is called.
Processors:

 GetExternalCommerceSystemProductList – Get list of IDs from ECS

GetSitecoreProductList

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 137 of 150

Name:
GetSitecoreProductList

Description: This pipeline is responsible for obtaining the list of product Ids to be synchronized
from Sitecore

Usage: Called internally from SynchronizeProducts but can also be called explicitly from
both ECS or SC

Args:
 Request – No default data. Is set prior to calling the pipeline.
 Response - Contains the list of product Ids to be synchronized and

SystemMessages. Is read after the pipeline is called.
Processors:

 GetSitecoreProductList – Get list of IDs from Sitecore

SynchronizeArtifacts

Name:
SynchronizeArtifacts

Description: This pipeline is responsible for synchronizing all the related repositories:
Manufacturers, Types, Classifications, Divisions, Resources, Specifications

Usage: Called from Sitecore or the external commerce system
Args:

 Request – Is empty by default. Is set prior to calling the pipeline.
 Response - Contains the list of messages generated during synchronization

Processors:

 RunSynchronizeManufacturers – Calls individual pipeline to synchronize
manufacturers respository

 RunSynchronizeTypes - Calls individual pipeline to synchronize types repository
 RunSynchronizeClassifications - Calls individual pipeline to synchronize

classifications respository
 RunSynchronizeDivisions - Calls individual pipeline to synchronize divisions

respository
 RunSynchronizeTypes - Calls individual pipeline to synchronize type repository
 RunSynchronizeResources - Calls individual pipeline to synchronize resources

respository
 RunSynchronizeSpecifications - Calls individual pipeline to synchronize global,

Category and type specifications

SynchronizeManufacturers

Name:
SynchronizeManufacturers

Description: This pipeline is responsible for synchronizing all manufacturers in the separate
Manufactures repository

Usage: Called from pipeline SynchronizeArtifacts as initialization of separate repositories
before synchronizing products and their references to these repositories.

Args:
 Request – Is empty by default. Is set prior to calling the pipeline.
 Response - Contains the list of messages generated during synchronization

Processors:

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 138 of 150

 ReadManufacturersFromSC – Optional
Reads the manufacturers to synchronize from SC. This processor can be skipped if
changes only are pushed from ECS to SC.

 ReadManufacturersFromECS – Mandatory
Reads the manufacturers to synchronize from ECS

 ResolveManufacturersChanges – Optional
Resolves differences between ECS and SC. This processor can be skipped if
changes only are pushed from ECS to SC.

 SaveManufacturersToECS – Optional
Saves synchronized manufacturers to ECS. This processor can be skipped if
changes only are pushed from ECS to SC.

 SaveManufacturersToSC – Mandatory
Saves synchronized manufacturers to SC.

SynchronizeClassifications

Name:
SynchronizeClassifications

Description: This pipeline is responsible for synchronizing all classifications in the separate
Classifications repository

Since multiple different classification schemes are supported, this pipeline is
responsible for synchronizing all schemes

Usage: Called from pipeline SynchronizeArtifacts as initialization of separate repositories
before synchronizing products and their references to these repositories.

Args:
 Request – Is empty by default. Is set prior to calling the pipeline.
 Response - Contains the list of messages generated during synchronization

Processors:

 ReadClassificationsFromSC – Optional
Reads the classifications to synchronize from SC. This processor can be skipped if
changes only are pushed from ECS to SC.

 ReadClassificationsFromECS – Mandatory
Reads the classifications to synchronize from ECS

 ResolveClassificationsChanges – Optional
Resolves differences between ECS and SC. This processor can be skipped if
changes only are pushed from ECS to SC.

 SaveClassificationsToECS – Optional
Saves synchronized classifications to ECS. This processor can be skipped if
changes only are pushed from ECS to SC.

 SaveClassificationsToSC – Mandatory
Saves synchronized classifications to SC.

SynchronizeTypes

Name:
SynchronizeTypes

Description: This pipeline is responsible for synchronizing all Types in the separate Product
Types repository

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 139 of 150

Usage: Called from pipeline SynchronizeArtifacts as initialization of separate repositories
before synchronizing products and their references to these repositories.

Args:
 Request – Is empty by default. Is set prior to calling the pipeline.
 Response - Contains the list of messages generated during synchronization

Processors:

 ReadTypesFromSC – Optional
Reads the types to synchronize from SC. This processor can be skipped if changes
only are pushed from ECS to SC.

 ReadTypesFromECS – Mandatory
Reads the types to synchronize from ECS

 ResolveTypesChanges – Optional
Resolves differences between ECS and SC. This processor can be skipped if
changes only are pushed from ECS to SC.

 SaveTypesToECS – Optional
Saves synchronized types to ECS. This processor can be skipped if changes only
are pushed from ECS to SC.

 SaveTypesToSC – Mandatory
Saves synchronized types to SC.

SynchronizeDivisions

Name:
SynchronizeDivisions

Description: This pipeline is responsible for synchronizing all divisions in the separate Divisions
repository

Usage: Called from pipeline SynchronizeArtifacts as initialization of separate repositories
before synchronizing products and their references to these repositories.

Args:
 Request – Is empty by default. Is set prior to calling the pipeline.
 Response - Contains the list of messages generated during synchronization

Processors:

 ReadDivisionsFromSC – Optional
Reads the divisions to synchronize from SC. This processor can be skipped if
changes only are pushed from ECS to SC.

 ReadDivisionsFromECS – Mandatory
Reads the divisions to synchronize from ECS

 ResolveDivisionsChanges – Optional
Resolves differences between ECS and SC. This processor can be skipped if
changes only are pushed from ECS to SC.

 SaveDivisionsToECS – Optional
Saves synchronized divisions to ECS. This processor can be skipped if changes
only are pushed from ECS to SC.

 SaveDivisionsToSC – Mandatory
Saves synchronized divisions to SC.

SynchronizeResources

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 140 of 150

Name:
SynchronizeResources

Description: This pipeline is responsible for synchronizing all resources in Sitecore Media Library
Usage: Called from pipeline SynchronizeArtifacts as initialization of separate repositories

before synchronizing products and their references to these repositories.

NB In case resources are kept only in the ECS, then this pipeline can be skipped or
configured empty

Args:
 Request – Is empty by default. Is set prior to calling the pipeline.
 Response - Contains the list of messages generated during synchronization

Processors:

 ReadResourcesFromSC – Optional
Reads the resources to synchronize from SC. This processor can be skipped if
changes only are pushed from ECS to SC.

 ReadResourcesFromECS – Mandatory
Reads the resources to synchronize from ECS

 ResolveResourcesChanges – Optional
Resolves differences between ECS and SC. This processor can be skipped if
changes only are pushed from ECS to SC.

 SaveResourcesToECS – Optional
Saves synchronized resources to ECS. This processor can be skipped if changes
only are pushed from ECS to SC.

 SaveResourcesToSC – Mandatory
Saves synchronized resources to SC.

SynchronizeSpecifications

Name:
SynchronizeSpecifications

Description: This pipeline is responsible for synchronizing specifications on type, category and
globally by running separate pipelines for each

Usage: Called from pipeline SynchronizeArtifacts as initialization of separate repositories
before synchronizing products and their references to these repositories

Args:
 Request - Is set prior to calling the pipeline.
 Response - Is read after the pipeline is called.

Processors:
 RunSynchronizeGlobalSpecifications – Runs a separate pipeline to synchronize

global specifications
 RunSynchronizeTypeSpecifications - Runs a separate pipeline to synchronize

type specifications
 RunSynchronizeClassificationSpecifications - Runs a separate pipeline to

synchronize category specifications

SynchronizeGlobalSpecifications

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 141 of 150

Name:
SynchronizeGlobalSpecifications

Description: This pipeline is responsible for synchronizing global specifications
The specifications and the tables for fixed key-value pairs are stored under
“/sitecore/content/Product Artifacts/Lookups/Global Product Specification Lookups”

Usage: Called internally from pipeline SynchronizeSpecifications
Args:

 Request - Is set prior to calling the pipeline.
 Response - Is read after the pipeline is called.

Processors:
 ReadGlobalSpecificationsFromSC – Optional

Reads the product specifications data from SC. This processor can be skipped if
changes only are pushed from ECS to SC.

 ReadGlobalSpecificationsFromECS – Mandatory
Reads the product specifications data from ECS

 ResolveGlobalSpecificationsChanges – Optional
Resolves differences between ECS and SC. This processor can be skipped if
changes only are pushed from ECS to SC.

 SaveGlobalSpecificationsToECS – Optional
Saves synchronized product specifications data to ECS. This processor can be
skipped if changes only are pushed from ECS to SC.

 SaveGlobalSpecificationsToSC – Mandatory
Saves synchronized product specifications data to SC.

SynchronizeTypeSpecifications

Name:
SynchronizeTypeSpecifications

Description: This pipeline is responsible for synchronizing type specifications
The specifications and the tables for fixed key-value pairs are stored under
“/sitecore/content/Product Artifacts/Product Types”

Note: For types also specification options and default values are synchronized as
part of this pipeline

Usage: Called internally from pipeline SynchronizeSpecifications
Args:

 Request - Is set prior to calling the pipeline.
 Response - Is read after the pipeline is called.

Processors:
 ReadTypeSpecificationsFromSC – Optional

Reads the product specifications data from SC. This processor can be skipped if
changes only are pushed from ECS to SC.

 ReadTypeSpecificationsFromECS – Mandatory
Reads the product specifications data from ECS

 ResolveTypeSpecificationsChanges – Optional
Resolves differences between ECS and SC. This processor can be skipped if
changes only are pushed from ECS to SC.

 SaveTypeSpecificationsToECS – Optional
Saves synchronized product specifications data to ECS. This processor can be
skipped if changes only are pushed from ECS to SC.

 SaveTypeSpecificationsToSC – Mandatory
Saves synchronized product specifications data to SC.

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 142 of 150

SynchronizeClassificationSpecifications

Name:
SynchronizeClassificationSpecifications

Description: This pipeline is responsible for synchronizing Category specifications
The specifications and the tables for fixed key-value pairs are stored under
“/sitecore/content/Product Artifacts/Classifications”

Note: Since multiple different classification schemes are supported, this pipeline is
responsible for synchronizing specifications for all schemes

Usage: Called internally from pipeline SynchronizeSpecifications
Args:

 Request - Is set prior to calling the pipeline.
 Response - Is read after the pipeline is called.

Processors:
 ReadClassificationSpecificationsFromSC – Optional

Reads the classifications specifications data from SC. This processor can be
skipped if changes only are pushed from ECS to SC.

 ReadClassificationSpecificationsFromECS – Mandatory
Reads the classifications specifications data from ECS

 ResolveClassificationSpecificationsChanges – Optional
Resolves differences between ECS and SC. This processor can be skipped if
changes only are pushed from ECS to SC.

 SaveClassificationSpecificationsToECS – Optional
Saves synchronized classifications specifications data to ECS. This processor can
be skipped if changes only are pushed from ECS to SC.

 SaveClassificationSpecificationsToSC – Mandatory
Saves synchronized classifications specifications data to SC.

After running the pipeline the categories will have a folder called Specifications containing all the
specifications for the category, including tables with fixed set key-value pairs for reference from products.

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 143 of 150

SynchronizeProduct

SynchronizeProduct is used to synchronize a single product between the external commerce system and
Sitecore. The product to synchronize is given by Id.

Name:
SynchronizeProduct

Description: This pipeline is responsible for synchronizing a single product by calling a number
of individual pipelines. Each pipeline will update the references between the product
and the related separate repositories except pipeline SynchronizeProductItem,
which operates on the main product data on the product item itself.

Usage: Called directly from service method SynchronizeProduct and from
SynchronizeProductList indirectly

Args:
 Request - Contains the external product Id. Is set prior to calling the pipeline.
 Response - Contains the SystemMessages. Is read after the pipeline is called.

Processors:
 RunSyncronizeProductManufacturers – Synchronizes relations to manufacturers
 RunSyncronizeProductType – Synchronizes relation to product type
 RunSyncronizeProductClassifications – Synchronizes relations to classifications
 RunSyncronizeProductResources – Synchronizes resources and relations to

resources
 RunSyncronizeProductRelations – Synchronizes relations to other products

thorugh cross-sell, variants etc
 RunSyncronizeProductDivisions – Synchronizes relations to divisions
 RunSyncronizeProductItem – Synchronizes main product data on the product

item itself
 RunSynchronizeProductSpecifications – Calls individual pipeline to synchronize

product specifications

SynchronizeProductManufacturers

SynchronizeProductManufacturers is used to synchronize references between a single product and
separate repository Manufacturers between the external commerce system and Sitecore. The product to
synchronize is given by external product Id.

Name:
SynchronizeProductManufacturers

Description: This pipeline is responsible for synchronizing and updating the relation between a
given product and manufacturers.
It’s assumed that manufacturers are already synchronized and present in CMS
The references to manufacturers are stored directly on the main product item

Usage: Called internally from pipeline SynchronizeProduct
Args:

 Request - Contains the external product Id. Is set prior to calling the pipeline.
 Response - Contains the Manufacturer. Is read after the pipeline is called.

Processors:
 ReadProductManafacturersFromSC – Optional

Reads the product manafacturers reference data from SC. This processor can be
skipped if changes only are pushed from ECS to SC.

 ReadProductManafacturersFromECS – Mandatory

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 144 of 150

Reads the product manafacturers reference data from ECS
 ResolveProductManafacturersChanges – Optional

Resolves differences between ECS and SC. This processor can be skipped if
changes only are pushed from ECS to SC.

 SaveProductManafacturersToECS – Optional
Saves synchronized product manafacturers reference data to ECS. This processor
can be skipped if changes only are pushed from ECS to SC.

 SaveProductManafacturersToSC – Mandatory
Saves synchronized product manafacturers reference data to SC.

SynchronizeProductType

Name:
SynchronizeProductType

Description: This pipeline is responsible for synchronizing and updating the references between
a given product and its product type.
It’s assumed that types are already synchronized and present in CMS
The references to product type is stored directly on the main product item

Usage: Called internally from pipeline SynchronizeProduct
Args:

 Request - Contains the external product Id. Is set prior to calling the pipeline.
 Response - Contains the Manufacturer. Is read after the pipeline is called.

Processors:
 ReadProductTypeFromSC – Optional

Reads the product type reference data from SC. This processor can be skipped if
changes only are pushed from ECS to SC.

 ReadProductTypeFromECS – Mandatory
Reads the product type reference data from ECS

 ResolveProductTypeChanges – Optional
Resolves differences between ECS and SC. This processor can be skipped if
changes only are pushed from ECS to SC.

 SaveProductTypeToECS – Optional
Saves synchronized product type reference data to ECS. This processor can be
skipped if changes only are pushed from ECS to SC.

 SaveProductTypeToSC – Mandatory
Saves synchronized product type reference data to SC.

SynchronizeProductClassifications

Name:
SynchronizeProductClassifications

Description: This pipeline is responsible for synchronizing and updating the references between
a given product and associated classifications and categories within.
It’s assumed that classifications are already synchronized and present in CMS
The references to categories are stored directly on the main product item

Usage: Called internally from pipeline SynchronizeProduct
Args:

 Request - Contains the external product Id. Is set prior to calling the pipeline.
 Response - Contains the Manufacturer. Is read after the pipeline is called.

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 145 of 150

Processors:
 ReadProductClassificationsFromSC – Optional

Reads the product classification reference data from SC. This processor can be
skipped if changes only are pushed from ECS to SC.

 ReadProductClassificationsFromECS – Mandatory
Reads the product classification reference data from ECS

 ResolveProductClassificationsChanges – Optional
Resolves differences between ECS and SC. This processor can be skipped if
changes only are pushed from ECS to SC.

 SaveProductClassificationsToECS – Optional
Saves synchronized product classification reference data to ECS. This processor
can be skipped if changes only are pushed from ECS to SC.

 SaveProductClassificationsToSC – Mandatory
Saves synchronized product classification reference data to SC.

SynchronizeProductEntity

Name:
SynchronizeProductEntity

Description: This pipeline is responsible for synchronizing and updating the main product entity
(data(for the product with the given external product ID.

Usage: Called internally from pipeline SynchronizeProduct
Args:

 Request - Contains the external product Id. Is set prior to calling the pipeline.
 Response - Contains the Manufacturer. Is read after the pipeline is called.

Processors:
 ReadProductFromSC – Optional

Reads the product data from SC. This processor can be skipped if changes only are
pushed from ECS to SC.

 ReadProductFromECS – Mandatory
Reads the product data from ECS

 ResolveProductChanges – Optional
Resolves differences between ECS and SC. This processor can be skipped if
changes only are pushed from ECS to SC.

 SaveProductToECS – Optional
Saves synchronized product data to ECS. This processor can be skipped if
changes only are pushed from ECS to SC.

 SaveProductToSC – Mandatory
Saves synchronized product data to SC.

SynchronizeProductDivisions

Name:
SynchronizeProductDivisions

Description: This pipeline is responsible for synchronizing and updating the references between
a given product and associated divisions.
It’s assumed that divisions are already synchronized and present in CMS
The references to divisions are stored directly on the main product item

Usage: Called internally from pipeline SynchronizeProduct

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 146 of 150

Args:
 Request - Contains the external product Id. Is set prior to calling the pipeline.
 Response - Contains the Manufacturer. Is read after the pipeline is called.

Processors:
 ReadProductDivisionsFromSC – Optional

Reads the product divisions reference data from SC. This processor can be skipped
if changes only are pushed from ECS to SC.

 ReadProductDivisionsFromECS – Mandatory
Reads the product divisions reference data from ECS

 ResolveProductDivisionsChanges – Optional
Resolves differences between ECS and SC. This processor can be skipped if
changes only are pushed from ECS to SC.

 SaveProductDivisionsToECS – Optional
Saves synchronized product divisions reference data to ECS. This processor can
be skipped if changes only are pushed from ECS to SC.

 SaveProductDivisionsToSC – Mandatory
Saves synchronized product divisions reference data to SC.

SynchronizeProductResources

Name:
SynchronizeProductDivisions

Description: This pipeline is responsible for synchronizing and updating the references between
a given product and associated resources.
It’s assumed that resources are already synchronized and present in CMS or that
the references are external using an URI to point to the location
The references to resources are stored under the main product item on the path
“[Product Item]/Resources/[Resource]”

Usage: Called internally from pipeline SynchronizeProduct
Args:

 Request - Contains the external product Id. Is set prior to calling the pipeline.
 Response - Contains the Manufacturer. Is read after the pipeline is called.

Processors:
 ReadProductResourcesFromSC – Optional

Reads the product resources reference data from SC. This processor can be
skipped if changes only are pushed from ECS to SC.

 ReadProductResourcesFromECS – Mandatory
Reads the product resources reference data from ECS

 ResolveProductResourcesChanges – Optional
Resolves differences between ECS and SC. This processor can be skipped if
changes only are pushed from ECS to SC.

 SaveProductResourcesToECS – Optional
Saves synchronized product resources reference data to ECS. This processor can
be skipped if changes only are pushed from ECS to SC.

 SaveProductResourcesToSC – Mandatory
Saves synchronized product resources reference data to SC.

SynchronizeProductRelations

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 147 of 150

Name:
SynchronizeProductRelations

Description: This pipeline is responsible for synchronizing product relations for a single product
Usage: Called internally from pipeline SynchronizeProduct

Args:
 Request - Contains the external product Id . Is set prior to calling the pipeline.
 Response - Contains the Product relations. Is read after the pipeline is called.

Processors:
 ReadProductRelationsFromSC - Reads the product relations data from SC. This

processor can be skipped if changes only are pushed from ECS to SC.
 ReadProductRelationsFromECS – Reads the product relations data from ECS
 ResolveProductRelationsChanges – Resolves differences between ECS and SC.

This processor can be skipped if changes only are pushed from ECS to SC.
 SaveProductRelationsToECS – Saves synchronized product relations data to

ECS. This processor can be skipped if changes only are pushed from ECS to SC.
 SaveProductRelationsToSC - Saves synchronized product relations data to SC.

SynchronizeProductSpecifications

Name:
SynchronizeProductSpecifications

Description: This pipeline is responsible for synchronizing product specifications for a single
product.
It’s assumed that specification tables of fixed key-value pairs (lookups) are already
synchronized and present in CMS when this pipeline is run
The references to specifications are stored under the main product item on the path
“[Product Item]/Specifications/[Specification]”
Specifications that reference lookup tables can point to specification tables located
under global, classification or type.

Usage: Called internally from pipeline SynchronizeProduct
Args:

 Request - Contains the external product Id . Is set prior to calling the pipeline.
 Response - Contains the Product relations. Is read after the pipeline is called.

Processors:
 ReadProductSpecificationsFromSC - Optional

Reads the product specification data from SC. This processor can be skipped if
changes only are pushed from ECS to SC.

 ReadProductSpecificationsFromECS – Mandatory
Reads the product specification data from ECS

 ResolveProductSpecificationChanges – Optional
Resolves differences between ECS and SC. This processor can be skipped if
changes only are pushed from ECS to SC.

 SaveProductSpecificationsToECS – Optional
Saves synchronized product specification data to ECS. This processor can be
skipped if changes only are pushed from ECS to SC.

 SaveProductSpecificationsToSC – Mandatory
Saves synchronized product specification data to SC.

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 148 of 150

2.7 Connect Configuration

You can use the Sitecore.Commerce.config file and the individual service layer configuration files to

register entities, repositories, pipeline processors and service providers. In the following sections the Cart
service layer is used as example.

2.7.1 Factories and entities

The Factory Method Pattern is an object-oriented creational design pattern that implements the concept
of factories. You can create objects without basing it on a specific class. The core of this pattern is to
define an interface for creating an object, but let the classes that implement the interface decide which
class to instantiate. The Factory method lets a class defer instantiation to subclasses.

To configure the entity factory to use, set the type. By default the Sitecore Factory is used implicitly
through Connect:

<!-- ENTITY FACTORY Creates an entity by entity name. Allows to substitute default entity

with extended one. -->

<entityFactory type="Sitecore.Commerce.Entities.EntityFactory, Sitecore.Commerce"

singleInstance="true" />

To configure custom objects in the Sitecore.Commerce.Carts.config file:

<!-- Connect ENTITIES Contains all the Connect entities. The configuration can be used

to

substitute the default entity implementation with extended one. -->

<commerce.Entities>

 <CartBase type="Sitecore.Commerce.Entities.Carts.CartBase, Sitecore.Commerce" />

 <Cart type="Sitecore.Commerce.Entities.Carts.Cart, Sitecore.Commerce" />

</commerce.Entities>

In an actual Connect provider implementation, the custom objects are known and do not necessarily have
to be created through use of Factory.

You can use references to the factory as a parameter in some processors, for example, CreateCart:

<processor type="Sitecore.Commerce.Pipelines.Carts.CreateCart.CreateCart,

Sitecore.Commerce">

 <param ref="entityFactory" />

</processor>

You must use the Factory.Create method to get an instance of the needed type. For example, in the

following code snippet, we need a cart and calls the factory to create and return a cart. The cart domain
model can be completely modified and customized so that you can replace the default cart type with your
own implementation:

public override void Process(ServicePipelineArgs args)

{

 var result = (CartResult)args.Result;

 var cart = this.entityFactory.Create<Cart>("Cart");

 var request = (CreateOrResumeCartRequest)args.Request;

 cart.UserId = request.UserId;

 cart.ShopName = request.ShopName;

 cart.CartName = request.CartName;

 cart.CustomerId = request.CustomerId;

 cart.CartStatus = CartStatus.InProcess;

 result.Cart = cart;

}

The Commerce Connect Developer's Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 149 of 150

2.7.2 Pipelines for Methods

In the Sitecore.Commerce.Carts.config file, you can set your processors into pipelines that to

inject business logic.

The following table contains some examples of pipelines in the configuration file of Connect:

Pipeline Description
getCarts This pipeline searches for all carts that match some specific criteria. The

carts are managed by the commerce system. This pipeline reads cart data
from the commerce system and converts that data into Connect format.

createOrResumeCart This pipeline:

 Initiates the creation of a shopping cart.

 Loads persisted, abandoned cart, if present.

 Calls resumeCart pipeline to resume loaded cart.

 Calls createCart pipeline to create cart if no cart was found in the

previous steps.
createCart This pipeline:

 Is internally used by the createOrResumeCart pipeline if the

existing cart was not found and should be created.

 Creates a cart with the minimal number of required fields.

 Moves a visitor / contact to the initial state in the engagement plan.

 Saves a cart to the storage and triggers the CartCreate event.
resumeCart This pipeline:

 Is internally used by the createOrResumeCart pipeline if a cart

was loaded and should be resumed.

 Sets the initial state to the loaded cart, moves a visitor / contact to
the initial state in the engagement plan.

 Saves a cart to the storage and triggers the CartResume event.
loadCart This pipeline:

 Gets a cart object that matches a specified criteria.

 Reads data for a cart that is managed by the commerce system.

 Reads the cart data from the commerce system and converts that
data into the Connect format.

saveCart This pipeline saves the cart object to an external system and in Sitecore EA
state.

addCartLines This pipeline adds a new line to the shopping cart and records a
corresponding page event in DMS.
This happens when a product is added to the cart.

removeCartLines This pipeline removes cart lines from cart.
updateCartLines This pipeline updates lines on cart.
deleteCart This pipeline:

 Deletes a cart permanently:

 When the cart is deleted, it triggers the event in DMS to indicate
that the cart is deleted.

updateCart This pipeline:

 Passes an updated cart to the external commerce system.

 Triggers an event in DMS to indicate that the cart is being updated.
lockCart This pipeline sets the cart to a locked state and prevents any modifications.
unlockCart This pipeline sets the cart to an unlocked state.
getCartTotal This pipeline:

 Gets the totals object that matches the specified criteria.

 Is responsible for reading pricing data from a commerce system.

Sitecore Commerce Connect 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 150 of 150

 Converts the contents of a Connect cart into a format the commerce
system can work with.

 Sends a request to the commerce system to calculate the totals,
and converts the output into the proper Connect format.

getProductPrices This pipeline:

 Gets the price object that matches the specified criteria.

 Reads the pricing data from a commerce system.

 Requests the product pricing information from the commerce
system and converts the output into the proper Connect format.

	Chapter 1 Introduction
	Chapter 2 Using Connect to build e-commerce solutions
	2.1 Carts
	2.1.1 Cart Domain Model
	IReadOnlyCollections and service API
	Cart Keys
	Class: Cart Base
	Class: Cart
	Class: Cart Line
	Class: Cart Product
	Class: Cart Adjustment
	Class: Cart Option

	2.1.2 Cart Service Provider
	GetCarts
	CreateOrResumeCart
	LoadCart
	SaveCart
	AddCartLines
	RemoveCartLines
	UpdateCartLines
	DeleteCart
	UpdateCart
	LockCart
	UnlockCart
	MergeCart
	AddParties
	RemoveParties
	UpdateParties
	AddPaymentInfo
	RemovePaymentInfo
	AddShippingInfo
	RemoveShippingInfo

	2.1.3 Cart Pipelines
	GetCarts
	CreateOrResumeCart
	CreateCart
	ResumeCart
	LoadCart
	SaveCart
	AddCartLines
	RemoveCartLines
	UpdateCartLines
	DeleteCart
	UpdateCart
	LockCart
	UnlockCart
	MergeCart

	2.2 Pricing
	2.2.1 The Pricing Domain Model
	Class: Price
	Class: Price Condition
	Class: Total
	Class: TaxTotal
	Class: TaxSubtotal

	2.2.2 Pricing Service Methods
	GetProductPrices
	GetProductBulkPrices
	GetCartTotal

	2.2.3 Pricing Pipelines
	GetProductPrices
	GetProductBreakPrices
	GetCartTotals

	2.3 Order
	2.3.1 The Order Domain Model
	Class: Order
	Class: OrderHeader

	2.3.2 Order Service Methods
	SubmitVisitorOrder
	GetVisitorOrder
	GetVisitorOrders
	VisitorCancelOrder

	2.3.3 Order Pipelines
	SubmitVisitorOrder
	GetVisitorOrders
	GetVisitorOrder
	VisitorCancelOrder

	2.4 Inventory
	2.4.1 The Inventory Domain Model
	Class: StockInformation
	Class: OrderableInformation
	Class: IndexStockInformation
	Class: StockInformationUpdate
	Class: StockInformationUpdateLocation
	Class: StockDetailsLevel
	Class: StockStatus
	Class: InventoryProduct
	Class: StockLocations

	2.4.2 Inventory Service Methods
	GetStockInformation
	GetPreOrderableInformation
	GetBackOrderableInformation
	VisitedProductStockStatus
	ProductsAreBackInStock
	VisitorSignUpForStockNotification
	RemoveVisitorFromStockNotification
	GetBackInStockInformation

	2.4.3 Inventory Pipelines
	GetStockInformation
	StockStatusForIndexing
	GetPreOrderableInformation
	GetBackOrderableInformation
	VisitorAppliedFacet
	VisitorAppliedSortOrder
	ProductsAreBackInStock
	GetBackInStockInformation
	VisitorSignUpForStockNotification
	RemoveVisitorFromStockNotification
	OrderedProductStockStatus
	AddToCartStockStatus
	VisitedProductStockStatus
	CurrentProductID

	2.5 Customer
	2.5.1 The Customer Domain Model
	Class: CommerceUser
	Class: CommerceCustomer
	Class: CustomerParty
	Class: CustomerPartyTypes
	Class: Party

	2.5.2 Customer Service Methods
	CreateUser
	UpdateUser
	DeleteUser
	DisableUser
	EnableUser
	GetUser
	GetUsers
	CreateCustomer
	UpdateCustomer
	DisableCustomer
	EnableCustomer
	DeleteCustomer
	GetCustomer
	GetCustomers
	AddCustomers
	AddUsers
	RemoveCustomers
	RemoveUsers
	AddCustomerParties
	RemoveCustomerParties
	UpdateCustomerParties
	AddParties
	GetParties
	RemoveParties
	UpdateParties
	UpdatePassword

	2.5.3 Customer Pipelines
	CreateUser
	UpdateUser
	DeleteUser
	DisableUser
	EnableUser
	GetUsers
	GetUser
	CreateCustomer
	GetCustomers
	GetCustomer
	UpdateCustomer
	DeleteCustomer
	DisableCustomer
	EnableCustomer
	AddCustomerParties
	RemoveCustomerParties
	UpdateCustomerParties
	GetParties
	AddParties
	RemoveParties
	UpdateParties

	2.6 Product Sync
	2.6.1 The Product Sync Domain Model
	Class: Product
	Class: ProductSpecifications
	Class: ProductSpecification
	Class: ProductClassification
	Class: ProductType
	Class: ProductManufacturer
	Class: ProductClassificationGroup
	Class: ProductVariantSpecificaions
	Class: ProductResource
	Class: Division
	Class: ProductRelation
	Class: ProductRelationType

	2.6.2 Product Sync Service Methods
	SynchronizeProducts
	SynchronizeProductList
	SynchronizeProduct
	SynchronizeArtifacts

	2.6.3 Product Sync Pipelines
	SynchronizeProducts
	SynchronizeProductList
	GetExternalCommerceSystemProductList
	GetSitecoreProductList
	SynchronizeArtifacts
	SynchronizeManufacturers
	SynchronizeClassifications
	SynchronizeTypes
	SynchronizeDivisions
	SynchronizeResources
	SynchronizeSpecifications
	SynchronizeGlobalSpecifications
	SynchronizeTypeSpecifications
	SynchronizeClassificationSpecifications
	SynchronizeProduct
	SynchronizeProductManufacturers
	SynchronizeProductType
	SynchronizeProductClassifications
	SynchronizeProductEntity
	SynchronizeProductDivisions
	SynchronizeProductResources
	SynchronizeProductRelations
	SynchronizeProductSpecifications

	2.7 Connect Configuration
	2.7.1 Factories and entities
	2.7.2 Pipelines for Methods

